

Welcome to the AiiDA-Siesta documentation!

The aiida-siesta python package interfaces the SIESTA DFT code
(http://www.icmab.es/siesta) with the AiiDA framework
(http://www.aiida.net). The package contains: plugins for SIESTA
itself and for other utility programs, new data structures, and basic
workflows. It is distributed under the MIT license and available from
(https://github.com/albgar/aiida_siesta_plugin).

Acknowledgments:

The Siesta input plugin was originally developed by Victor
M. Garcia-Suarez.

Alberto Garcia further improved the Siesta input plugin and wrote the
parser for Siesta and the STM plugin.

Emanuele Bosoni contributed the band-structure support for the Siesta
plugin.

Vladimir Dikan and Alberto Garcia developed the workflows and
refined the architecture of the package.

We acknowledge partial support from the Spanish MINECO (projects
FIS2012-37549-C05-05 and FIS2015-64886-C5-4-P) and by the MaX
European Centre of Excellence [http://www.max-centre.eu/] funded by the Horizon 2020 EINFRA-5 program,
Grant No. 676598.

We thank the AiiDA team, who are also supported by the [MARVEL National Centre for Competency in Research](<http://nccr-marvel.ch>)
funded by the Swiss National Science Foundation [http://www.snf.ch/en]

[image: MINECO-AEI]

[image: MaX]

[image: MARVEL]

Contents:

Installation

	Installation

SIESTA plugins

	Standard Siesta plugin
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Errors

	Restarts

	Additional advanced features

	STM plugin
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Errors

SIESTA Workflows

	SIESTA Base workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	SIESTA Bands workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	SIESTA STM workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

Indices and tables

	Index

	Module Index

	Search Page

Installation

It would be a good idea to create and switch to a new python virtual
environment before the installation.

Install the plugin by executing, from the top level of the plugin
directory:

pip install -e .

As a pre-requisite, this will install an appropriate version of the
aiida_core python framework.

Important

Next, do not forget to run the following command

reentry scan -r aiida

Standard Siesta plugin

Description

A plugin for Siesta’s basic functionality.

Supported Siesta versions

At least 4.0.1 of the 4.0 series, and 4.1-b3 of the 4.1 series, which
can be found in the development platform
(http://launchpad.net/siesta/).

Inputs

	structure, class StructureData

A structure. Siesta employs “species labels” to implement special
conditions (such as basis set characteristics) for specific atoms
(e.g., surface atoms might have a richer basis set). This is
implemented through the ‘name’ attribute of the Site objects. For example:

alat = 15. # angstrom
cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]

 # Benzene molecule with a special carbon atom
 s = StructureData(cell=cell)
 s.append_atom(position=(0.000,0.000,0.468),symbols=['H'])
 s.append_atom(position=(0.000,0.000,1.620),symbols=['C'])
 s.append_atom(position=(0.000,-2.233,1.754),symbols=['H'])
 s.append_atom(position=(0.000,2.233,1.754),symbols=['H'])
 s.append_atom(position=(0.000,-1.225,2.327),symbols='C',name="Cred")
 s.append_atom(position=(0.000,1.225,2.327),symbols=['C'])
 s.append_atom(position=(0.000,-1.225,3.737),symbols=['C'])
 s.append_atom(position=(0.000,1.225,3.737),symbols=['C'])
 s.append_atom(position=(0.000,-2.233,4.311),symbols=['H'])
 s.append_atom(position=(0.000,2.233,4.311),symbols=['H'])
 s.append_atom(position=(0.000,0.000,4.442),symbols=['C'])
 s.append_atom(position=(0.000,0.000,5.604),symbols=['H'])

	parameters, class ParameterData

A dictionary with scalar fdf variables and blocks, which are the
basic elements of any Siesta input file. A given Siesta fdf file
can be cast almost directly into this dictionary form, except that
some items (for structure data) are blocked. Any units are
specified for now as part of the value string. Blocks are entered
by using an appropriate key and Python’s multiline string
constructor. For example:

{
 "mesh-cutoff": "200 Ry",
 "dm-tolerance": "0.0001",
 "%block example-block": """
 first line
 second line """,
}

Note that Siesta fdf keywords allow ‘.’, ‘-‘, or nothing as
internal separators. AiiDA does not allow the use of ‘.’ in
nodes to be inserted in the database, so it should not be used
in the input script (or removed before assigning the dictionary to
the ParameterData instance).

	pseudo, class PsfData

The PsfData class has been implemented along the lines of the Upf class for QE.

One pseudopotential file per atomic element. Several species in the
Siesta sense can share the same pseudopotential. For the example
above:

pseudo_file_to_species_map = [("C.psf", ['C', 'Cred']),
 ("H.psf", 'H')
]

Alternatively, a pseudo for every atomic species can be set with the
use_pseudos_from_family method, if a family of pseudopotentials
has been installed. (But the family approach does not yet support
multiple species sharing the same pseudopotential.)

Note

The verdi command-line interface has recently been upgraded
to support entry points defined by external packages. We have
implemented a verdi data psf family of commands: uploadfamily,
exportfamily, and listfamilies.

	basis, class ParameterData

A dictionary specifically intended for basis set information. It
follows the same structure as the parameters element, including
the allowed use of fdf-block items. This raw interface allows a
direct translation of the myriad basis-set options supported by the
Siesta program. In future we might have a more structured input for
basis-set information.

	kpoints, class KpointsData

Reciprocal space points for the full sampling of the BZ during the
self-consistent-field iteration. It must be given in mesh form. There is no support
yet for Siesta’s kgrid-cutoff keyword.

If this node is not present, only the Gamma point is used for sampling.

	bandskpoints, class KpointsData

Reciprocal space points for the calculation of bands. They can be
given as a simple list of k-points, as segments with start and end
point and number of points, or as a complete automatic path, using the
functionality of modern versions of the class.

If this node is not present, no band structure is computed.

	settings, class
ParameterData

An optional dictionary that activates non-default operations. For a list of possible
values to pass, see the section on advanced features.

Outputs

There are several output nodes that can be created by the plugin,
according to the calculation details. All output nodes can be
accessed with the calculation.out method.

The output parser takes advantage of the structured output available
in Siesta as a Chemical Markup Language (CML) file. The CML-writer
functionality should be compiled in and active in the run!

	output_parameters ParameterData
(accessed by calculation.res)

A dictionary with metadata, scalar result values, a warnings
list, and possibly a timing section.
Units are specified by means of an extra item with ‘_units’
appended to the key:

{
 "siesta:Version": "siesta-4.0.2",
 "E_fermi": -3.24,
 "E_fermi_units": "eV",
 "FreeE": -6656.2343
 "FreeE_units": "eV",
 "global_time": 55.213,
 "timing_decomposition": {
 "compute_DM": 33.208,
 "nlefsm-1": 0.582,
 "nlefsm-2": 0.045,
 "post-SCF": 2.556,
 "setup_H": 16.531,
 "setup_H0": 2.351,
 "siesta": 55.213,
 "state_init": 0.171
 },
 "warnings": ["INFO: Job Completed"]
}

The scalar quantities to include are specified in a global-variable
in the parser. Currently they are the Kohn-Sham, Free, Band, and Fermi
energies, and the total spin. These are converted to ‘float’.
As this dictionary is sorted, keys for program values and metadata are
intermixed.

The timing information (if present), includes the global walltime in
seconds, and a decomposition by sections of the code. Most relevant
are typically the compute_DM and setup_H sections.

The ‘warnings’ list contains program messages, labeled as INFO,
WARNING, or FATAL, read directly from a MESSAGES file produced by
Siesta, which include items from the execution of the program and
also a possible ‘out of time’ condition. This is implemented by
passing to the program the wallclock time specified in the script,
and checking at each scf step for the walltime consumed. This
‘warnings’ list can be examined by the parser itself to raise an
exception in the FATAL case.

	output_array ArrayData

Contains the final forces (eV/Angstrom) and stresses (GPa) in array form.

	output_structure StructureData

Present only if the calculation is moving the ions. Cell and ionic
positions refer to the last configuration.

	bands_array, BandsData

Present only if a band calculation is requested (signaled by the
presence of a bandskpoints input node of class KpointsData)
Contains the list of electronic energies for every kpoint. For
spin-polarized calculations, the ‘bands’ array has an extra dimension
for spin.

No trajectories have been implemented yet.

Errors

Errors during the parsing stage are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

Restarts

A restarting capability is implemented following the basic idiom:

c = load_node(Failed_Calc_PK)
c2 = c.create_restart(force_restart=True)
c2.store_all()
c2.submit()

The density-matrix file is copied from the old calculation scratch
folder to the new calculation’s one. If an ouput_structure node
is available, it is used as the structure for restarting.

This approach enables continuation of (variable-geometry) runs which
have failed due to lack of time or insufficient convergence in the
allotted number of steps.

Additional advanced features

While the input link with name parameters is used for the main
Siesta options (as would be given in an fdf file), additional settings
can be specified in the settings input, also of type ParameterData.

Below we summarise some of the options that you can specify, and their effect.
In each case, after having defined the content of settings_dict, you can use
it as input of a calculation calc by doing:

calc.use_settings(ParameterData(dict=settings_dict))

The keys of the settings dictionary are internally converted to
uppercase by the plugin.

Adding command-line options

If you want to add command-line options to the executable (particularly
relevant e.g. to tune the parallelization level), you can pass each option
as a string in a list, as follows:

settings_dict = {
 'cmdline': ['-option1', '-option2'],
}

Note that very few user-level comand-line options (besides those
already inserted by AiiDA for MPI operation) are currently implemented.

Retrieving more files

If you know that your calculation is producing additional files that you want to
retrieve (and preserve in the AiiDA repository), you can add
those files as a list as follows:

settings_dict = {
 'additional_retrieve_list': ['aiida.EIG', 'aiida.ORB_INDX'],
}

STM plugin

Description

A plugin for Util/plstm

Supported Siesta versions

At least 4.0.1 of the 4.0 series, and 4.1-b3 of the 4.1
series, which can be found in the development platform (http://launchpad.net/siesta/).

Inputs

	parameters, class ParameterData

A dictionary with a few parameters to specify the mode of calculation
and the height or isovalue at which to process the LDOS:

{
 "z": "5.8" # In Ang
}

(The mode of calculation is hard-wired to constant-height for now)

	parent_folder, class
RemoteData

The parent folder of a previous Siesta calculation in which the LDOS
file was generated.

Outputs

	stm_array ArrayData

A collection of three 2D arrays (X, Y, Z) holding the section or
topography information. They follow the meshgrid convention in
Numpy. A contour plot can be generated with the get_stm_image.py
script in the repository of examples.

	output_parameters ParameterData
(accessed by calculation.res)

At this point only parser information is returned.

Errors

Errors during the parsing stage are reported in the log of the calculation (accessible
with the verdi calculation logshow command).

SIESTA Base workflow

Description

The SIESTA program is able to perform, in a single run, the
computation of the electronic structure, the optional relaxation of
the input structure, and a final analysis step in which a variety of
magnitudes can be computed: band structures, projected densities of
states, etc. The operations to be carried out are specified in a very
flexible input format. Accordingly, the SiestaBaseWorkchain
has been designed to be able to run the most general SIESTA
calculation, with support for most of the available options (limited
only by corresponding support in the parser plugin). In addition, the
workchain is able to restart a calculation in case of failure (lack of
electronic-structure or relaxation convergence, termination due to
walltime restrictions, etc).

Supported Siesta versions

At least 4.0.1 of the 4.0 series, and 4.1-b3 of the 4.1 series, which
can be found in the development platform
(http://launchpad.net/siesta/).

Inputs

	code, a code

	structure, class StructureData

A structure. See the plugin documentation for more details.

	parameters, class ParameterData

A dictionary with scalar fdf variables and blocks, which are the
basic elements of any Siesta input file. A given Siesta fdf file
can be cast almost directly into this dictionary form, except that
some items (e.g. for structure data) are blocked. Any units are
specified for now as part of the value string. Blocks are entered
by using an appropriate key and Python’s multiline string
constructor. For example:

{
 "mesh-cutoff": "200 Ry",
 "dm-tolerance": "0.0001",
 "%block example-block": """
 first line
 second line """,
}

Note that Siesta fdf keywords allow ‘.’, ‘-‘, or nothing as
internal separators. AiiDA does not allow the use of ‘.’ in
nodes to be inserted in the database, so it should not be used
in the input script (or removed before assigning the dictionary to
the ParameterData instance).

	pseudos

(Optional)
A dictionary of PsfData objects representing the pseudopotentials for
the calculation. If it is not input, a pseudo_family specification
must be used (see below).

The PsfData class has been implemented along the lines of the Upf class for QE.

	pseudo_family, a Str

(Optional)

	basis, class ParameterData

A dictionary specifically intended for basis set information. It
follows the same structure as the parameters element, including
the allowed use of fdf-block items. This raw interface allows a
direct translation of the myriad basis-set options supported by the
Siesta program. In future we might have a more structured input for
basis-set information.

	kpoints, class KpointsData

Reciprocal space points for the full sampling of the BZ during the
self-consistent-field iteration. It must be given in mesh form. There is no support
yet for Siesta’s kgrid-cutoff keyword.

If this node is not present, only the Gamma point is used for sampling.

	bandskpoints, class KpointsData

Reciprocal space points for the calculation of bands. They can be
given as a simple list of k-points, as segments with start and end
point and number of points, or as a complete automatic path, using the
functionality of modern versions of the class.

If this node is not present, no band structure is computed.

	settings, class
ParameterData

An optional dictionary that activates non-default operations. For a list of possible
values to pass, see the section on advanced features.

	options, class
ParameterData

Execution options

	clean_workdir, Bool

	max_iterations, Int

The maximum number of iterations allowed in the restart cycle for
calculations.

Outputs

	output_parameters ParameterData
(accessed by calculation.res)

A dictionary with metadata and scalar result values from the last
calculation executed.

	output_structure StructureData

Present only if the workchain is modifying the geometry of the system.

	bands_array, BandsData

Present only if a band calculation is requested (signaled by the
presence of a bandskpoints input node of class KpointsData)
Contains the list of electronic energies for every kpoint. For
spin-polarized calculations, the ‘bands’ array has an extra dimension
for spin.

	remote_folder

The working remote folder for the last calculation executed.

SIESTA Bands workflow

Description

The SiestaBandsWorkchain workflow can be used to visualize the
electronic band structure of the system of interest. Its inputs are a
structure object and a specification of the quality and cost level of
the calculation. The latter is implemented internally, as in Quantum
Espresso, as a set of protocols, which group operational parameters
to offer the desired balance of accuracy and efficiency. Optionally,
the workflow will relax the geometry of the system before computing
the band structure. As discussed in the context of the Base workflow,
the computation could be implemented as a single (restartable) SIESTA
calculation, but it is instead segmented into different steps
(optional relaxation followed by a final electronic-structure plus
band calculation) to provide future support for different levels of
accuracy in the two stages. Support for the fat-bands feature that
tags energy levels with orbital projections will be added soon.

Supported Siesta versions

At least 4.0.1 of the 4.0 series, and 4.1-b3 of the 4.1 series, which
can be found in the development platform
(http://launchpad.net/siesta/).

Inputs

	code, a code

	structure, class StructureData

A structure. See the plugin documentation for more details.

	protocol, Str

Either “standard” or “fast” at this point.
Each has its own set of associated parameters.

	standard:

{
 'kpoints_mesh_offset': [0., 0., 0.],
 'kpoints_mesh_density': 0.2,
 'dm_convergence_threshold': 1.0e-4,
 'forces_convergence_threshold': "0.02 eV/Ang",
 'min_meshcutoff': 100, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'md-type-of-run': "cg",
 'md-num-cg-steps': 10,
 'pseudo_familyname': 'lda-ag',
 'atomic_heuristics': {
 'H': { 'cutoff': 100 },
 'Si': { 'cutoff': 100 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'DZP'
 }
 }

	fast:

{
 'kpoints_mesh_offset': [0., 0., 0.],
 'kpoints_mesh_density': 0.25,
 'dm_convergence_threshold': 1.0e-3,
 'forces_convergence_threshold': "0.2 eV/Ang",
 'min_meshcutoff': 80, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'md-type-of-run': "cg",
 'md-num-cg-steps': 8,
 'pseudo_familyname': 'lda-ag',
 'atomic_heuristics': {
 'H': { 'cutoff': 50 },
 'Si': { 'cutoff': 50 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'SZP'
 }
 }

The atomic_heuristics dictionary is intended to encode the
peculiarities of particular elements. It is work in progress.

The basis section applies globally for now.

Outputs

	scf_plus_band_parameters ParameterData

A dictionary with metadata and scalar result values from the final scf+bands
calculation executed.

	bandstructure, BandsData

Contains the list of electronic energies for every kpoint. For
spin-polarized calculations, the ‘bands’ array has an extra dimension
for spin.

SIESTA STM workflow

Description

The SiestaSTMWorkchain workflow is functionally very similar
to the SiestaBandsWorkchain workflow, but instead of a band
structure, the analysis stage produces a file with the local density
of states (LDOS) in an energy window. The LDOS can be seen as a
“partial charge density” to which only those wavefunctions with
eigenvalues in a given energy interval contribute. In the
Tersoff-Hamann approximation, the LDOS can be used as a proxy for the
simulation of STM experiments. The 3D LDOS file is then processed by a
specialized program plstm to produce a plot of the LDOS in
a 2D section at a given height in the unit cell (simulating the height
of a STM tip), or a simulated topography map by recording the z
coordinates with a given value of the LDOS.

The inputs to the STM workchain include a (possibly
already relaxed) structure and the protocol specification. The energy
window for the LDOS and the tip height or the LDOS iso-value can be in
principle specified by the user if full control is desired (probably
after evaluation of the results of the SiestaBandsWorkchain
workflow), but for the purposes of a turn-key solution, a range of
energies around the Fermi Level (or regions near to the HOMO and/or
LUMO), and a range of heights should automatically be selected by the
workflow and the results presented to the user for further
consideration. The workflow executes the plstm program via an
AiiDA plugin, which is also included in the aiida-siesta
distribution. Its parser stage returns an AiiDA ArrayData object whose
contents can be displayed by standard tools within AiiDA and the wider
Python ecosystem.

Supported Siesta versions

At least 4.0.1 of the 4.0 series, and 4.1-b3 of the 4.1 series, which
can be found in the development platform
(http://launchpad.net/siesta/).

Inputs

	code, a code associated to the Siesta plugin

	stm_code, a code associated to the STM (plstm) plugin

	structure, class StructureData

A structure. See the plugin documentation for more details.

	height, class Float

The height of the plane at which the image is desired (in Ang).

	e1, class Float

The lower limit of the energy window for which the LDOS is to be
computed (in eV).

	e2, class Float

The upper limit of the energy window for which the LDOS is to be
computed (in eV).

	protocol, Str

Either “standard” or “fast” at this point.
Each has its own set of associated parameters.

	standard:

{
 'kpoints_mesh_offset': [0., 0., 0.],
 'kpoints_mesh_density': 0.2,
 'dm_convergence_threshold': 1.0e-4,
 'forces_convergence_threshold': "0.02 eV/Ang",
 'min_meshcutoff': 100, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'md-type-of-run': "cg",
 'md-num-cg-steps': 10,
 'pseudo_familyname': 'lda-ag',
 'atomic_heuristics': {
 'H': { 'cutoff': 100 },
 'Si': { 'cutoff': 100 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'DZP'
 }
 }

	fast:

{
 'kpoints_mesh_offset': [0., 0., 0.],
 'kpoints_mesh_density': 0.25,
 'dm_convergence_threshold': 1.0e-3,
 'forces_convergence_threshold': "0.2 eV/Ang",
 'min_meshcutoff': 80, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'md-type-of-run': "cg",
 'md-num-cg-steps': 8,
 'pseudo_familyname': 'lda-ag',
 'atomic_heuristics': {
 'H': { 'cutoff': 50 },
 'Si': { 'cutoff': 50 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'SZP'
 }
 }

The atomic_heuristics dictionary is intended to encode the
peculiarities of particular elements. It is work in progress.

The basis section applies globally for now.

Outputs

	output_structure ParameterData

The final relaxed structure (if applicable)

	stm_array ArrayData

A collection of three 2D arrays (X, Y, Z) holding the section or
topography information. They follow the meshgrid convention in
Numpy. A contour plot can be generated with the get_stm_image.py
script in the repository of examples.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/MaX.png
DRIVING
THE EXASCALE
TRANSITION

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to the AiiDA-Siesta documentation!

 		
 Installation

 		
 Standard Siesta plugin

 		
 Description

 		
 Supported Siesta versions

 		
 Inputs

 		
 Outputs

 		
 Errors

 		
 Restarts

 		
 Additional advanced features

 		
 Adding command-line options

 		
 Retrieving more files

 		
 STM plugin

 		
 Description

 		
 Supported Siesta versions

 		
 Inputs

 		
 Outputs

 		
 Errors

 		
 SIESTA Base workflow

 		
 Description

 		
 Supported Siesta versions

 		
 Inputs

 		
 Outputs

 		
 SIESTA Bands workflow

 		
 Description

 		
 Supported Siesta versions

 		
 Inputs

 		
 Outputs

 		
 SIESTA STM workflow

 		
 Description

 		
 Supported Siesta versions

 		
 Inputs

 		
 Outputs

_images/MARVEL.png
MARVEL

_images/MINECO-AEI.png
HNSTERID 2

DE ECONOMIA, INDUSTRIA
Y COMPETITIVIDAD

