

    
      
          
            
  
Welcome to the AiiDA-Siesta documentation!

The aiida-siesta python package interfaces the SIESTA DFT code
(http://icmab.es/siesta) with the AiiDA framework
(http://www.aiida.net).  The package contains: plugins for SIESTA
itself and for other utility programs, new data structures, and basic
workflows. It is distributed under the MIT license and available from
(https://github.com/albgar/aiida_siesta_plugin).
If you use this package, please cite J. Chem. Phys. 152, 204108 (2020)
(https://doi.org/10.1063/5.0005077).


Acknowledgments:

The Siesta input plugin was originally developed by Victor M. Garcia-Suarez.

Alberto Garcia further improved the Siesta input plugin and wrote the parser for Siesta and the STM plugin.

Emanuele Bosoni contributed the band-structure support for the Siesta plugin.

Vladimir Dikan and Alberto Garcia developed the workflows and
refined the architecture of the package.

Vladimir Dikan and Emanuele Bosoni ported the plugin and the base workflow to AiiDA 1.0.
Alberto Garcia futher refined the 1.0-compatible functionality.

Since November 2019, Emanuele Bosoni is in charge of the code’s development and maintenance,
under the supervision of Alberto Garcia.

Pol Febrer contributed the SiestaIterator and SiestaConverger workflows, including the underline
abstract classes system.

We acknowledge partial support from the Spanish Research Agency (projects
FIS2012-37549-C05-05, FIS2015-64886-C5-4-P and PGC2018-096955-B-C44) and  by the MaX
European Centre of Excellence [http://www.max-centre.eu/] funded by the Horizon 2020
INFRAEDI-2018-1 program, Grant No. 824143.

We thank the AiiDA team, who are also supported by the [MARVEL National Centre for Competency in Research](<http://nccr-marvel.ch>)
funded by the Swiss National Science Foundation [http://www.snf.ch/en]


[image: MINECO-AEI]



[image: MaX]



[image: MARVEL]





Contents:


Installation



	Installation
	For developers












Calculation plugins



	Calculations
	Siesta calculations
	Description

	Supported Siesta versions

	Inputs

	Submitting the calculation

	Outputs

	Errors

	Restarts

	Additional advanced features
	Adding command-line options

	Retrieving more files









	STM calculations
	Description

	Supported Siesta versions

	Inputs

	Submitting the calculation

	Outputs

	Errors
















Utilities



	Utils
	The protocols system
	Description

	Supported Siesta versions

	Available protocols

	How to use protocols

	How to create my protocols





	FDF dictionary
	Description
















Workflows



	Workflows
	Base workflow
	Description

	Supported Siesta versions

	Inputs

	Relaxation and bands

	Submitting the WorkChain

	Outputs

	Error handling

	Protocol system





	Bandgap workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Equation Of State workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	STM workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Iterator workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Converger workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Sequential Converger workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system
















Indices and tables


	Index


	Module Index


	Search Page












          

      

      

    

  

    
      
          
            
  
Installation

It would be a good idea to create and switch to a new python virtual
environment before the installation.

The latest release of the package can be obtained simply with:

pip install aiida-siesta





In this case, make sure to refer to the appropriate documentation part (“stable”, not “latest”).

Because the package is under development, in order to enjoy the most recent features
one can clone the github repository
(https://github.com/albgar/aiida_siesta_plugin) and install
from the top level of the plugin directory with:

pip install -e .





As a pre-requisite, both commands above will install an appropriate version of the
aiida-core python framework, if this is not already installed.
In case of a fresh install of aiida-core, follow the AiiDA documentation [https://aiida.readthedocs.io/projects/aiida-core/en/stable/]
in order to configure aiida.


Important

In any case, do not forget to run the following commands after the
installation:

reentry scan -r aiida
verdi daemon restart








For developers

This plugin is open-source and contributions are welcomed. Before starting the development, the following steps
are suggested:


	After cloning from github, install with pip install .[dev]. This will download all the tools for testing.


	Install pre-commit [https://pre-commit.com/#install] hooks. This will “force” to follow some python standards we require. In fact, the hooks will impede
to commit unless the required standards are met.


	Make sure to run all the tests (simply pytest test/ from the main folder of the package) to make sure the contribution is not
breaking any part of the code. Ideally, write tests for the new part implemented.










          

      

      

    

  

    
      
          
            
  
Calculations

This section contains the documentation for the calculations plugins
distributed in aiida-siesta.
They are the fundamental blocks that enable to run through AiiDA some executable of the Siesta package,
meaning the siesta code itself and some post-processing tools.
For each calculation, we explain the inputs selection, the submission command and the returned outputs.
From the AiiDA prospective, we describe here the functionalities of both the CalcJob class and
the associated parser.



	Siesta calculations
	Description

	Supported Siesta versions

	Inputs

	Submitting the calculation

	Outputs

	Errors

	Restarts

	Additional advanced features





	STM calculations
	Description

	Supported Siesta versions

	Inputs

	Submitting the calculation

	Outputs

	Errors













          

      

      

    

  

    
      
          
            
  
Siesta calculations


Description

A plugin for Siesta main code. It allows to prepare, submit and retrieve the results of a standard siesta calculation,
including support for the parsing of the electronic bands and the output geometry of a relaxation.
It is implemented in the class SiestaCalculation.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform (https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

Some examples are referenced in the following list. They are located in the folder
aiida_siesta/examples/plugins/siesta.


	code, class Code, Mandatory

A code object linked to a Siesta executable.
If you setup the code Siesta4.0.1 on machine kelvin following the aiida guidelines [https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/run_codes.html],
then the code is selected in this way:

codename = 'Siesta4.0.1@kelvin'
from aiida.orm import Code
code = Code.get_from_string(codename)







	structure, class StructureData, Mandatory

A structure. Siesta employs “species labels” to implement special
conditions (such as basis set characteristics) for specific atoms
(e.g., surface atoms might have a richer basis set). This is
implemented through the name attribute of the Site objects. For example:

from aiida.orm import StructureData

alat = 15. # angstrom
cell = [[alat, 0., 0.,],
  [0., alat, 0.,],
  [0., 0., alat,],
 ]

 # Benzene molecule with a special carbon atom
 s = StructureData(cell=cell)
 s.append_atom(position=(0.000,0.000,0.468),symbols=['H'])
 s.append_atom(position=(0.000,0.000,1.620),symbols=['C'])
 s.append_atom(position=(0.000,-2.233,1.754),symbols=['H'])
 s.append_atom(position=(0.000,2.233,1.754),symbols=['H'])
 s.append_atom(position=(0.000,-1.225,2.327),symbols='C',name="Cred")
 s.append_atom(position=(0.000,1.225,2.327),symbols=['C'])
 s.append_atom(position=(0.000,-1.225,3.737),symbols=['C'])
 s.append_atom(position=(0.000,1.225,3.737),symbols=['C'])
 s.append_atom(position=(0.000,-2.233,4.311),symbols=['H'])
 s.append_atom(position=(0.000,2.233,4.311),symbols=['H'])
 s.append_atom(position=(0.000,0.000,4.442),symbols=['C'])
 s.append_atom(position=(0.000,0.000,5.604),symbols=['H'])





The class StructureData uses Angstrom
as internal units, the cell and atom positions must be specified in Angstrom.

The StructureData can also import
ase structures or pymatgen structures. These two tools can be used to load
structure from files. See example example_cif_bands.py.






	parameters, class Dict, Mandatory

A dictionary with scalar fdf variables and blocks, which are the
basic elements of any Siesta input file. A given Siesta fdf file
can be cast almost directly into this dictionary form, except that
some items are blocked. The blocked keywords include the system information
(system-label, system-name) and all the structure information as they
will be automatically set by Aiida. Moreover, the keyword dm-use-save-dm is
not allowed (the restart options are explained here)
together with the keyword geometry-must-converge (set to True by default for each
calculation with variable geometry). Finally,  all the pao options must be avoided here,
because they belong to the basis input
(next to next in this list). Any units are
specified for now as part of the value string. Blocks are entered
by using an appropriate key and Python’s multiline string
constructor. For example:

from aiida.orm import Dict

parameters = Dict(dict={
  "mesh-cutoff": "200 Ry",
  "dm-tolerance": "0.0001",
  "%block example-block":
    """
    first line
    second line
    %endblock example-block""",
})





Note that Siesta fdf keywords allow ‘.’, ‘-‘, (or nothing) as internal
separators. AiiDA does not allow the use of ‘.’ in nodes to be
inserted in the database, so it should not be used in the input script
(or removed before assigning the dictionary to the Dict
instance). For legibility, a single dash (‘-‘) is suggested, as in the
examples above. Moreover, because the parameters are passed through a python
dictionary, if, by mistake, the user passes the same keyword two (or more)
times, only the last specification will be considered. For instance:

parameters = Dict(dict={
  "mesh-cutoff": "200 Ry",
  "mesh-cutoff": "300 Ry",
  })





will set a mesh-cutoff of 300 Ry. This is the opposite respect to what is done
in the Siesta code, where the first assignment is the selected one. Please note that
this applies also to keywords that correspond to the same fdf variable. For instance:

parameters = Dict(dict={
  "mesh-cutoff": "200 Ry",
  "Mesh-Cut-off": "300 Ry",
  })





will run a calculation with mesh-cutoff equal to 300 Ry, whithout raising any
error.






	pseudos, input namespace of class PsfData
OR class PsmlData, Mandatory

The PsfData  <aiida_siesta.data.psf.PsfData> and PsmlData  <aiida_siesta.data.psml.PsmlData>
classes have been implemented along the lines of the Upf class of aiida-core.

One pseudopotential file per atomic element is required. Several species (in the
Siesta sense, which allows the same element to be treated differently
according to its environment) can share the same pseudopotential. For the example
above:

import os
from aiida_siesta.data.psf import PsfData

pseudo_file_to_species_map = [ ("C.psf", ['C', 'Cred']),("H.psf", ['H'])]
pseudos_dict = {}
for fname, kinds, in pseudo_file_to_species_map:
      absname = os.path.realpath(os.path.join("path/to/file",fname))
      pseudo, created = PsfData.get_or_create(absname, use_first=True)
      for j in kinds:
              pseudos_dict[j]=pseudo





Alternatively, a pseudo for every atomic species can be set with the
use_pseudos_from_family  method, if a family of pseudopotentials
has been installed. For an example see example_psf_family.py


Note

The verdi command-line interface now supports entry points
defined by external packages. We have implemented  verdi data
psf and verdi data psml suites of commands: uploadfamily, exportfamily, and
listfamilies.



It can be argued that a single “SiestaPseudo” class, with psf and psml
subclasses, might have been implemented. But the PsmlData  <aiida_siesta.data.psml.PsmlData>
class aims to transcend Siesta and to be used by other codes.






	basis, class Dict, Optional

A dictionary specifically intended for basis set information. It
follows the same structure as the parameters element, including
the allowed use of fdf-block items. This raw interface allows a
direct translation of the myriad basis-set options supported by the
Siesta program. In future we might have a more structured input for
basis-set information.
An example:

from aiida.orm import Dict

basis_dict = {
'pao-basistype':'split',
'pao-splitnorm': 0.150,
'pao-energyshift': '0.020 Ry',
'%block pao-basis-sizes':
"""
C    SZP
Cred SZ
H    SZP
%endblock pao-basis-sizes""",
}

basis = Dict(dict=basis_dict)





In case no basis is set, the Siesta calculation will not include
any basis specification and it will run with the default basis: DZP
plus (many) other defaults.






	kpoints, class KpointsData, Optional

Reciprocal space points for the full sampling of the BZ during the
self-consistent-field iteration. It must be given in mesh form. There is no support
yet for Siesta’s “kgrid-cutoff” keyword:

from aiida.orm import KpointsData
kpoints=KpointsData()
kp_mesh = 5
mesh_displ = 0.5 #optional
kpoints.set_kpoints_mesh([kp_mesh,kp_mesh,kp_mesh],[mesh_displ,mesh_displ,mesh_displ])





The class KpointsData <aiida.orm.KpointsData> also implements the methods
set_cell_from_structure and set_kpoints_mesh_from_density
that allow to obtain a uniform mesh automatically.

If this node is not present, only the Gamma point is used for sampling.






	bandskpoints, class KpointsData, Optional

Reciprocal space points for the calculation of bands.
This keyword is meant to facilitate the management of kpoints
exploiting the functionality
of the class KpointsData.
The full list of kpoints must be passed to the class
and they must be in units of the reciprocal lattice vectors.
Moreover the cell must be set in the KpointsData
class.

This can be achieved manually listing a set of kpoints:

from aiida.orm import KpointsData
bandskpoints=KpointsData()
bandskpoints.set_cell(structure.cell, structure.pbc)
kpp = [(0.500,  0.250, 0.750), (0.500,  0.500, 0.500), (0., 0., 0.)]
bandskpoints.set_kpoints(kpp)





In this case the Siesta input will use the “BandPoints” block.

Alternatively (recommended) the high-symmetry path associated to the
structure under investigation can be
automatically generated through the aiida tool get_explicit_kpoints_path.
Here how to use it:

from aiida.orm import KpointsData
bandskpoints=KpointsData()
from aiida.tools import get_explicit_kpoints_path
symmpath_parameters = Dict(dict={'reference_distance': 0.02})
kpresult = get_explicit_kpoints_path(s, **symmpath_parameters.get_dict())
bandskpoints = kpresult['explicit_kpoints']





Where ‘s’ in the input structure and reference_distance is
the distance between two subsequent kpoints.
In this case the block “BandLines” is set in the Siesta
calculation.


Note

The get_explicit_kpoints_path make use of “SeeK-path”.
Please cite the HPKOT paper [http://dx.doi.org/10.1016/j.commatsci.2016.10.015] if you use this tool. “SeeK-path”
is a external utility, not a requirement for aiida-core, therefore
it is not available by default. It can be easily installed using
pip install seekpath. “SeeK-path” allows to
determine canonical unit cells and k-point information in an easy
way. For more general information, refer to the SeeK-path documentation [https://seekpath.readthedocs.io/en/latest/].




Warning

“SeeK-path”
might modify the structure to follow particular conventions
and the generated kpoints might only
apply on the internally generated ‘primitive_structure’ and not
on the input structure that was provided. The correct
way to use this tool is to use the generated ‘primitive_structure’ also for the
Siesta calculation:

structure = kpresult['primitive_structure']







The final option (unrecommended) covers the situation
when one really needs to maintain a specific convention for the
structure or one needs to calculate the bands on a specific path
that is not a high-symmetry direction, the following (very involved)
option is available:

from aiida.orm import KpointsData
bandskpoints=KpointsData()
from aiida.tools.data.array.kpoints.legacy import get_explicit_kpoints_path as legacy_path
kpp = [('A',  (0.500,  0.250, 0.750), 'B', (0.500,  0.500, 0.500), 40),
('B', (0.500,  0.500, 0.500), 'C', (0., 0., 0.), 40)]
tmp=legacy_path(kpp)
bandskpoints.set_cell(structure.cell, structure.pbc)
bandskpoints.set_kpoints(tmp[3])
bandskpoints.labels=tmp[4]





The legacy get_explicit_kpoints_path shares only the name with the function in
aiida.tools, but it is very different in scope.

The full list of cases can be explored looking at the example example_bands.py


Warning

The implementation relies on the correct description of
the labels in the class KpointsData.
Refrain from the use of bandskpoints.labels in any other
situation apart from the one described above. An incorrect use of the labels
might result in an incorrect parsing of the bands.



If the keyword node bandskpoints is not present, no band structure is computed.






	settings, class  Dict , Optional

An optional dictionary that activates non-default operations. For a list of possible
values to pass, see the section on advanced features.






	parent_calc_folder, class  RemoteData , Optional

Optional port used to activate the restart features.








Submitting the calculation

Once all the inputs above are set, the subsequent step consists in passing them to the
calculation class and run/submit it.

First, the Siesta calculation class is loaded:

from aiida_siesta.calculations.siesta import SiestaCalculation
builder = SiestaCalculation.get_builder()





The inputs (defined as in the previous section) are passed to the builder:

builder.code = code
builder.structure = structure
builder.parameters = parameters
builder.pseudos = pseudos_dict
builder.basis = basis
builder.kpoints = kpoints
builder.bandskpoints = bandskpoints





Finally the resources for the calculation must be set, for instance:

builder.metadata.options.resources = {'num_machines': 1}
builder.metadata.options.max_wallclock_seconds = 1800





Optionally, label and description:

builder.metadata.label = 'My generic title'
builder.metadata.description 'My more detailed description'





To run the calculation in an interactive way:

from aiida.engine import run
results = run(builder)





Here the results variable will contain a dictionary
containing all the nodes that were produced as output.

Another option is to submit it to the daemon:

from aiida.engine import submit
calc = submit(builder)





In this case, calc is the calculation node and not the results dictionary.


Note

In order to inspect the inputs created by AiiDA without
actually running the calculation, we can perform a dry run of the submission process:

builder.metadata.dry_run = True
builder.metadata.store_provenance = False





This will create the input files, that are available for inspection.




Note

The use of the builder makes the process more intuitive, but it
is not mandatory. The inputs can be provided as keywords argument when you
launch the calculation, passing the calculation class as the first argument:

run(SiestaCalculation, structure=s, pseudos=pseudos, kpoints = kpoints, ...)





same syntax for the command submit.



A large set of examples covering some standard cases are in the folder
aiida_siesta/examples/plugins/siesta. They can be run with:

runaiida example_name.py {--send, --dont-send} code@computer





The parameter --dont-send will activate the “dry run” option. In that case a test
folder (submit_test) will be created, containing all the files that aiida
generates automatically. The parameter --send will submit the example to
the daemon. One of the two options needs to be present to run the script.
The second argument contains the name of the code (code@computer) to use
in the calculation. It must be a previously set up code, corresponding to
a siesta executable.




Outputs

There are several output nodes that can be created by the plugin,
according to the calculation details.  All output nodes can be
accessed with the calculation.outputs method.


	output_parameters Dict

A dictionary with metadata, scalar result values, a warnings
list, and possibly a timing section.
Units are specified by means of an extra item with ‘_units’
appended to the key:

{
  "siesta:Version": "siesta-4.0.2",
  "E_Fermi": -3.24,
  "E_Fermi_units": "eV",
  "FreeE": -6656.2343,
  "FreeE_units": "eV",
  "E_KS": -6656.2343,
  "E_KS_units": 'eV',
  "global_time": 55.213,
  "timing_decomposition": {
    "compute_DM": 33.208,
    "nlefsm-1": 0.582,
    "nlefsm-2": 0.045,
    "post-SCF": 2.556,
    "setup_H": 16.531,
    "setup_H0": 2.351,
    "siesta": 55.213,
    "state_init": 0.171
  },
  "warnings": [ "INFO: Job Completed"]
}





The scalar quantities included are, currently, the Kohn-Sham
(E_KS), Free (FreeE), Band (Ebs), and Fermi (E_Fermi)
energies, and the total spin (stot). These are converted to float.
The other quantities are or type str.

The timing information (if present), includes the global walltime in
seconds, and a decomposition by sections of the code. Most relevant
are typically the compute_DM and setup_H sections.

The warnings list contains program messages, labeled as “INFO”,
“WARNING”, or “FATAL”, read directly from a  MESSAGES file produced by
Siesta, which include items from the execution of the program and
also a possible ‘out of time’ condition. This is implemented by
passing to the program the wallclock time specified in the script,
and checking at each scf step for the walltime consumed. This
warnings list can be examined by the parser itself to raise an
exception in the “FATAL” case.






	forces_and_stress ArrayData

Contains the final forces (eV/Angstrom) and stresses (GPa) in array form.
To access their values:

forces_and_stress.get_array("forces")
forces_and_stress.get_array("stress")










	output_structure StructureData

Present only if the calculation is moving the ions.  Cell and ionic
positions refer to the last configuration.






	bands, BandsData

Present only if a band calculation is requested (signaled by the
presence of a bandskpoints input node of class KpointsData <aiida.orm.KpointsData>).
It contains an array with the list of electronic energies (in eV) for every
kpoint. For spin-polarized calculations, there is an extra dimension
for spin. In this class also the full list of kpoints is stored and they are
in units of 1/Angstrom. Therefore a direct comparison with the Siesta output
SystLabel.bands is possible only after the conversion of Angstrom to Bohr.
The bands are not rescaled by the Fermi energy. Tools for the generation
of files that can be easly plot are available through bands.export.






	remote_folder, RemoteData

The working remote folder for the last calculation executed.






	retrieved, RemoteData

The local folder with the retrieved files.





No trajectories have been implemented yet.




Errors

Errors during the parsing stage are reported in the log of the calculation (accessible
with the verdi process report command).
Moreover, they are stored in the output_parameters node under the key warnings.




Restarts

A restarting capability is implemented through the optional input
parent_calc_folder, RemoteData,
which represents the remote scratch folder (remote_folder output)
of a previous calculation.

The density-matrix file is copied from the old calculation scratch
folder to the new calculation’s one.

This approach enables continuation of runs which have failed due to
lack of time or insufficient convergence in the allotted number of
steps.

An informative example is example_restart.py in the folder aiida_siesta/examples/plugins/siesta.




Additional advanced features

While the input link with name parameters is used for the main
Siesta options (as would be given in an fdf file), additional settings
can be specified in the settings input, also of type Dict.

Below we summarise some of the options that you can specify, and their effect.

The keys of the settings dictionary are internally converted to
uppercase by the plugin.


Adding command-line options

If you want to add command-line options to the executable (particularly
relevant e.g. to tune the parallelization level), you can pass each option
as a string in a list, as follows:

settings_dict = {
    'cmdline': ['-option1', '-option2'],
}
builder.settings = Dict(dict=settings_dict)





Note that very few user-level comand-line options (besides those
already inserted by AiiDA for MPI operation) are currently implemented.




Retrieving more files

If you know that your calculation is producing additional files that you want to
retrieve (and preserve in the AiiDA repository), you can add
those files as a list as follows:

settings_dict = {
  'additional_retrieve_list': ['aiida.EIG', 'aiida.ORB_INDX'],
}
 builder.settings = Dict(dict=settings_dict)





See for example example_ldos.py in aiida_siesta/examples/plugins/siesta.
The files can then be accesed through the output retrieved and
its methods get_object and get_object_content.









          

      

      

    

  

    
      
          
            
  
STM calculations


Description

A plugin for Util/plstm of the Siesta distribution, a tool to simulate STM images.
The code plstm is able to process the .LDOS file produced by Siesta. The .LDOS file
contains informations on the local density of states (LDOS) in an energy window.
In the Tersoff-Hamann approximation, the LDOS can be used as a proxy for the simulation
of STM experiments.
This plugin requires in input the AiiDA folder where the .LDOS folder was generated
and few other parameters (see Inputs section). It produces an array that can be plotted to
obtain the STM images.
The plugin is implemented in the class STMCalculation.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release,
which can be found in the development platform (https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

Some examples are referenced in the following list. They are located in the folder aiida_siesta/examples/plugins/stm.


	code, class Code, Mandatory

A code object linked to a plstm executable.
If you setup the code plstm1 on machine kelvin following the aiida guidelines [https://aiida-core.readthedocs.io/en/latest/get_started/computers.html],
then the code is selected in this way:

codename = 'plstm1@kelvin'
from aiida.orm import Code
code = Code.get_from_string(codename)







	mode, class Str, Mandatory

Allowed values are constant-height or constant-current, corresponding to the two
operation modes of the STM that are supported by the plstm code.
Examples for both modes are presented in the example folder.






	value, class Float, Mandatory

The value of height or current at which the user wants to simulate the
STM. The height must be expressed in Angstrom, the current in e/bohr**3.






	ldos_folder, class RemoteData, Mandatory

The parent folder of a previous Siesta calculation in which the .LDOS
file was generated. To have more information on how to produce the .LDOS file,
one can refer to the example aiida_siesta/examples/plugins/siesta/example_ldos.py.
Please note that the ldos_folder must be on the same machine on which the STM analysis
is performed. In other words, the input code must be installed on the same machine
where the ldos_folder resides. This is a limitation of AiiDA that can not copy
between different computers, but it is also required by plstm itself, as the .LDOS
file is produced in an unformatted way.






	spin_option, class Str, Optional

Input port that allows the selection of the spin options offered by plstm. It follows the same
syntax of the code. The value “q” selects a total charge analysis. The value “s” selects the
total spin magnitude analyisis (only available if the parent Siesta calculation is spin polarized).
Finally, the values “x”, “y” or “z” indicate a separate analysis of one the three spin components
(only available if the parent Siesta calculation is performed with non-collinear options).
If the port is not specified the default “q” option is activated.






	settings, class Str, Optional

A port settings is available to activate some advanced features. For instance the modification
of the command line instructions and the addition of files to retreave. For more info,
the corresponding section of the Standard Siesta Plugin can be seen here.








Submitting the calculation

The submission of any CalcJob of AiiDA always follows the same schema. Therefore,
to understand how to submit a STM calculation, it is sufficient to follow the explanation
of the corresponding section of the Standard Siesta Plugin.
The only change is to import the correct plugin:

from aiida_siesta.calculations.stm import STMCalculation
builder = STMCalculation.get_builder()





and, of course, to define the correct inputs allowed by STMCalculation (previous
section).




Outputs


	stm_array ArrayData

A collection of three 2D arrays (grid_X, grid_Y, STM) holding the section or
topography information. They follow the meshgrid convention in
Numpy. A heat-map plot can be generated with the get_stm_image.py
script in the repository of examples.






	output_parameters Dict

At this point, it constains only the parser information and the name of the
retrieved file where the STM info were stored.








Errors

Errors during the parsing stage are reported in the log of the calculation (accessible
with the verdi process report command).







          

      

      

    

  

    
      
          
            
  
Utils

This section collects the documentation on tools that have been implemented in
the package, but can not be classified as traditional AiiDA objects.
The scope of these tools is a further improvement of the automatization
of siesta calculations. Some of them are more for development purposes (FDFDict),
others are for the benefit of any user (the protocol system).



	The protocols system
	Description

	Supported Siesta versions

	Available protocols

	How to use protocols

	How to create my protocols





	FDF dictionary
	Description













          

      

      

    

  

    
      
          
            
  
The protocols system


Description

In order to submit SiestaCalculations, the user needs to manually select all the inputs,
being careful to pass the correct specifications to perform the calculation
(as explained in the corresponding section).
The package aiida_siesta provides also a set of pre-selected inputs to run a SiestaCalculations,
and the WorkChains distributed in the package,
supporting the tasks of the relaxation of a structure and the calculations of bands.
In other words, the user can obtain a builder of the
SiestaCalculation that is ready to be submitted. This builder, in fact, is pre-filled
with inputs selected according to the structure under investigation and very few options specified by the user.
The lengthy inputs selection is substitute by:

inp_gen = SiestaCalculation.inputs_generator()
builder = inp_gen.get_filled_builder(structure, calc_engines, protocol)





The list of options to obtain the builder is presented here, however the main feature is the
use of protocols. A protocol groups operational parameters for a Siesta calculation
and it is meant to offer a set of inputs with the desired balance of accuracy and efficiency.
At the moment only one protocol is shipped in the package, it is called
standard_psml. More on it is presented in the next to next subsection.
It is important to note that the implemented protocols are not, for the moment,
input parameters that are guaranteed to perform in any situation. They are only
based on reasonable assumptions and few tests. However, in the package it is also implemented
a system that allows users to create their own protocols, as clarified here.
Finally, it must be remembered that the builder produced according to a protocol and few other options is fully
modifiable before submission, leaving full flexibility to the user.
We expect in the future to have more and more “know how” and improve the
reliability and richness of the available protocols.

We focus here on the description of the use of protocols for the SiestaCalculation,
but the same system is available for all the WorkChains distributed in this package.
A small paragraph in the documentation of each WorkChain will explain the details of
the usage of protocols for that particular WorkChain.




Supported Siesta versions

The protocol system, at the moment, requires a version of siesta
with support for psml pseudopotential. At least the MaX-1.0 release of Siesta, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta), meets this requirement.
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Available protocols

With the word protocol we mean a series of suggested inputs for AiiDA
CalJobs/WorkChains that allow users to more easily automatize their workflows.
These inputs reflects a certain set of operational parameters for a Siesta
calculation. The choice of the inputs of a DFT simulation should be carefully tested
for any new system. Therefore the use of protocols, in place of a careful and tested
choice of inputs, it is always somehow limiting. It can be, however,
considered a good starting point.
This is the very beginning of the development and, for the moment, only
one very basic protocol is implemented.
A description of its variables is now reported. Each protocol contain a section
with global variables and an atomic_heuristics dictionary, a dictionary intended to encode the
peculiarities of particular elements.


	standard_psml

The full list of variables for this protocol are collected in the protocol_registry.yaml file, located in
aiida_siesta/utils.


	global variables

Pseudopotential ONCVPSPv0.4 (norm-conserving) of Pseudo Dojo in psml format, scalar relativistic,
PBE and with standard accuracy (download available from the PseudoDojo [http://www.pseudo-dojo.org/] web site).
Basis set apply globally, with size DZP and energy-shift of 50 meV. The mesh-cutoff is 200 Ry,
electronic-temp 25 meV, and a kpoint mesh with distance 0.1 are implemented.
Concerning the trashold for convergence, we implement 1.e-4 tolerance for the density matrix,
0.04 ev/ang for forces and 0.1 GPa for stress.
Few more global variables are related to mixing options:
scf-mixer-history is set to 5, and scf-mixer-weight is 0.1. As only the Max-1.0 version
of Siesta is supported, the default mixer is Pulay and the quantity mixed is the Hamiltonian.






	atomic_heuristics

The element “Ag” requires a bigger mesh-cutoff because mesh-cutoff = 200 Ry was leading to a
“Failure to converge standard eigenproblem” error for the “Ag” elemental crystal.
Custom basis for “Ca”,”Sr”,”Ba” are necessary because the automatic generation results
in a too-large radius for the “s” orbitals. The “Hg” custom basis introduces an increment of
all radii of 5% compared to the automatic generated orbitals and adds a Z orbital for the “p”
channel, while removing polarization.
The elements “Li”, “Be”, “Mg”, Na”, “Fe”, “Mn”, “Sb” require a bigger
mesh-cutoff because mesh-cutoff = 200 Ry resulted in
a discontinuous equation of state.





This choice of parameters have been tested on crystal elements up to the
element “Rn” and compared with the reference equation of state of the
DeltaTest [https://molmod.ugent.be/deltacodesdft] project, resulting on an average delta value of 7.1 meV.
The parameters of this protocol for noble gasses do not result in an a minimum of the equation of state.
Because Van der Waals forces are not included in the calculation, the result is not surprising.
We warn users to use with care this protocol for noble gasses.
It is important to stress that the present protocol has not been conceived to produce
good results for the Delta test; the basis sets are mostly automatic and the choice of
mesh-cutoff / kpoints-mesh is farely loose. The average value for the delta (7.1 meV)
is just an indication that the parameters’ choice gives reasonable results for elemental crystals.
We are working on a more accurate (and expensive) protocol that will provide much better
values of delta.
New tests and checks on the standard_psml protocol will be added in the aiida-siesta
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Protocols-validations].





The management of the pseudos is, at the moment, very fragile. It imposes that the user
loads a pseudo_family with the correct name that is hard-coded for the each protocol.
This name is ‘nc-sr-04_pbe_standard_psml’ for the standard_psml protocol.
Therefore a user, before using protocol, needs to download the correct pseudos and
load them (see next section) with the correct name.
—This last part will change soon, replaced with a proper setup-profile script —-




How to use protocols

In this section we explain how to obtain a pre-filled builder according to a protocol
and an input structure, that is ready to be submitted (or modified and then submitted).

First of all, the ‘nc-sr-04_pbe_standard_psml’ set of
pseudopotentials must be downloaded from PseudoDojo [http://www.pseudo-dojo.org/] and stored in the database in a family
with the same name. From command line:

wget http://www.pseudo-dojo.org/pseudos/nc-sr-04_pbe_standard_psml.tgz
tar -xf nc-sr-04_pbe_standard_psml.tgz
verdi data psml uploadfamily nc-sr-04_pbe_standard_psml nc-sr-04_pbe_standard_psml "Scalar-relativistic psf standard"





Once this first step is done, the pre-filled builder can be
accessed through the method inputs_generator of the SiestaCalculation
(and of any other workchain).
For example:

from aiida_siesta.calculations.siesta import SiestaCalculation
inp_gen = SiestaCalculation.inputs_generator()
builder = inp_gen.get_filled_builder(structure, calc_engines, protocol)
#here user can modify builder befor submission.
submit(builder)





The arguments of get_filled_builder of the input generator are explained here:


	structure, class StructureData, Mandatory

A structure. See the plugin documentation for more details.






	calc_engine, python dict, Mandatory

A dictionary containing the specifications of the code to run and the computational
resources. An example:

calc_engines = {
    'siesta': {
        'code': codename,
        'options': {
                'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
                'max_wallclock_seconds': 360,
                'queue_name': 'DevQ',
                'withmpi': True,
                'account': "tcphy113c"
         }
    }
}





The dictionary must present siesta as upper level key of the dictionary. This might seem unnecessary, but
will become fundamental for the use of protocols in more complicated WorkChain, involving not only
the siesta plugin, but also, for instance, the stm plugin. The structure of calc_engines for each
WorkChain of the package will be specified in the WorkChain documentation.






	protocol, python str, Mandatory

The protocol name, selected among the available ones, as explained in the previous section.






	bands_path_generator, python str, Optional

The presence of this parameter triggers the calculation of bands.
Two are the available value to pass as bands_path_generator: “seekpath” or “legacy”.
They set the way the path in k-space is produced. This path is used to display the
bands. While “seekpath” modify the structure running the calculation on an equivalent “conventional”
cell, “legacy” doesn’t and preserves the input structure. However the “legacy” method is known to
have bugs for certain structure cells.






	relaxation_type, python str, Optional

The presence of this parameter triggers the possibility to relax the structure.
The specifications of the relaxation_type are “atoms_only”, “variable_cell” or “constant_volume”,
that should be self expalnatory.
For the moment only the CG relaxation algorithm is implemented (in the future more will be added).






	spin, python str, Optional

The presence of this parameter triggers the spin options.
The specifications of the spin are the one of modern version of Siesta, they are
“polarized”, “non-collinear” and “spin-orbit”.
If no spin option is defined, the calculation will not be spin polarized.





An example of the use is in aiida_siesta/examples/plugins/siesta/example_protocol.py

The method get_filled_builder is definitely the most important tool offered by the inputs_generator,
however through the inputs_generator other methods can be accessed to explore
the various options of the protocol system. For instance, there is a method listing all the available protocols,
the available relaxation types and so on.




How to create my protocols

The protocol system allows also to create customized protocol. To this end, a
file similar to aiida_siesta/utils/protocol_registry.yaml
must be created, listing the custom protocols.
Then the path of this file must be added to the environment variable AIIDA_SIESTA_PROTOCOLS.
This will be sufficient to let aiida-siesta recognize the protocols.
The file containing the customized protocols must have the same structure of protocol_registry.yaml.
An example:

my_protocol:
  description: 'My description'
  parameters:
    xc-functional: "GGA"
    xc-authors: "PBE"
    mesh-cutoff: '200 Ry'
    ...
  spin_additions:
    write-mulliken-pop: 1
  relax_additions:
    scf-dm-tolerance: 1.e-4
    md-max-force-tol: '0.04 eV/ang'
    md-max-stress-tol: '0.1 GPa'
  basis:
    pao-energy-shift: '50 meV'
    pao-basis-size: 'DZP'
  pseudo_family: 'nc-sr-04_pbe_standard_psml'
  kpoints:
    distance: 0.1
    offset: [0., 0., 0.]
  atomic_heuristics:
    Li:
      parameters:
        mesh-cutoff: '250 Ry'
      basis:
        polarization: 'non-perturbative'
        pao-block: "Li 3 \n  ... "
        split-tail-norm: True





The protocol name should be the outer entry of the indentation.
For each protocol, some keyword are mandatory. They are description, parameters, basis and pseudo_family.
The pseudo_family
must contain the name of a family (Psml or Psf family) that has been already uploaded in the database.
The number of elements covered by your pseudo family will limit the materials you
can simulate with your protocol.
The parameters and basis entries are transformed into dictionaries and passed
to AiiDA after possible modifications due to atom heuristics or spin/relax additions.
For this reason, the syntax (lower case and ‘-‘ between words) must be respected in full.

Two optional keywords are relax_additions and spin_additions.
This two entries are not meant to host the siesta keywords that activate the relaxation or spin options,
but possible additions/modifications to the parameters entry, to apply in case of relaxation
or spin. When the use of protocols is called and the relax/spin options are requested (see here),
the system will automatically take care of introducing the correct siesta keyword (MD.TypeOfRun,
MD.VariableCell, spin etc.) that are indispensable to run the task. However, it might happen that
a user desires a more loose scf-dm-tolerance for the task of the relaxation or a different scf-mixer-weight
when the spin is active. The relax_additions and spin_additions keywords have been created
exactly for this purpose.
Please be carefull that (except for the mesh-cutoff) if a keyword in spin_additions or
relax_additions is already present in parameters, its value in parameters will overriden.
In other words, values in spin_additions or relax_additions have priority compared to the one
in parameters. Moreover relax_additions has priority respect to spin_additions.
For the mesh-cutoff the situation is different, because the biggest value will always be
considered, no metter where it is specified.
Another optional entry is kpoints, where a distance and an offset only can be specified.
The system will take care to create a uniform mesh for the structure under investigation with
a density that correspond to a distance (in 1/Angstrom) between adjacent kpoints equal to dinstance.

The final allowed (optional) keyword is atomic_heuristics.
In it, two only sub-keys are allowed: parameters and basis.
In parameters,  only a ‘mesh-cutoff’ can be specified. This mesh-cutoff applies globally
and only if it is the biggest one among the all mesh-cutoff that apply.
This system is meant to signal elements that requires a bigger ‘mesh-cutoff’ than normal.
For basis, we allow ‘split-tail-norm’, ‘polarization’, ‘size’ and ‘pao-block’. The ‘size’ and’ polarization’ introduce a block
reporting the change of pao size and polarization schema only for the element under definition.
The ‘pao-block’ allows to specify an explicit “block Pao-basis” for the element.
The ‘split-tail-norm’ instead activate in siesta the key ‘pao-split-tail-norm’, that applies globally.

We conclude this subsection with few more notes to keep in mind. First, the units mut be specified for each siesta keyword
that require units and they must be consisten throughout the protocol. This means that it is not possible
to define ‘mesh-cutoff’ in Ry in parameters, but in eV in the atomic_heuristics.
Second, it is up to the creator to remember to introcude the correct ‘xc-functional’ and ‘xc-authors’
keywords in the protocol that matches the same exchange-correlation functional of the pseudos in the
pseudo family. This also means that we do not support pseudos presenting
different exchange-correlation functionals in the same family. Third, we impose a description for
each protocol because in the description the creator must underline the limitations of the protocol.
For instance, the case when a certain protocol do not support spin-orbit as the pseudos are not relativistics.
The schema we presented here is certanly not perfect and it is far to cover all the possible situations,
however it must be remembered that any user has always the chance to modify the inputs (builder) before submission.







          

      

      

    

  

    
      
          
            
  
FDF dictionary


Description

The FDFDict class represents data from a .fdf-file (the standard input of the siesta
code). It behaves like a normal python
dictionary, but with translation rules that follow the standards of the Flexible Data Format (FDF).
The FDF format was developed inside the siesta package in order to facilitate the
creation of the input file of siesta. Among other features, it substitute strings in favour of
default values.
In particular it drops dashes/dots/colons and imposes lowercase.
The FDFDict class accepts in input a python dictionary and applies the same
rules to the “keys” of the dictionary.
An example:

from aiida_siesta.calculations.tkdict import FDFDict
inp_dict = {"ThisKey": 3,"a-no-ther": 4,"t.h.i.r.d" : 5}
f = FDFDict(inp_dict)
print(f.keys())





returns dict_keys(['thiskey', 'another', 'third']).

When two keys in the same dictionary will become the same string after translation, the last
definition will remain:

from aiida_siesta.calculations.tkdict import FDFDict
inp_dict = {"w":3,"e":4,"w--":5}
f = FDFDict(inp_dict)
print(f.get_dict())





returns {'w': 5, 'e': 4}.

The method get_dict returns the translated dictionary, but the class keeps record also of
the last unstraslated key for each key.
This can be seen just printing f. The method
get_untranslated_dict returns the dictionary with the last unstranslated keys as keys.
Therefore in our example, the get_untranslated_dict returns {'w--': 5, 'e': 4}.

Getter and setter are implemented to get and set the value automatically for each equivalent
key. f["w"], f["w---"] will return the same value. The call f["w---"] = 3 will reset
the value of key "w", also changing the “last untranslated key” to "w---".

Many more methods are available in the FDFDict class. They can be explored from the source code
(aiida_siesta.calculations.tkdict).
It is a useful tool for the development of new CalcJobs and WorkChains.







          

      

      

    

  

    
      
          
            
  
Workflows

In this section we document the AiiDA WorkChains distributed in aiida-siesta.
They are tools that automatize some simple tasks that are commonly faced during the
the research process.
The WorkChains are constructed using exclusively the
calculations plugin described in the section “Calculations”.



	Base workflow
	Description

	Supported Siesta versions

	Inputs

	Relaxation and bands

	Submitting the WorkChain

	Outputs

	Error handling

	Protocol system





	Bandgap workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Equation Of State workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	STM workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Iterator workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Converger workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system





	Sequential Converger workflow
	Description

	Supported Siesta versions

	Inputs

	Outputs

	Protocol system













          

      

      

    

  

    
      
          
            
  
Base workflow


Description

The SIESTA program is able to perform, in a single run, the
computation of the electronic structure, the optional relaxation of
the input structure, and a final analysis step in which a variety of
magnitudes can be computed: band structures, projected densities of
states, etc. The operations to be carried out are specified in a very
flexible input format.  Accordingly, the SiestaBaseWorkChain
has been designed to be able to run the most general SIESTA
calculation, with support for most of the available options (limited
only by corresponding support in the parser plugin). The option specifications
of the SiestaBaseWorkChain follow the conventions already presented in the
Siesta plugin. Therefore, for instance, the addition of
the input keyword bandskpoints triggers the calculation of the band structure
of a system, while it is sufficient to add the SIESTA MD keywords to the
parameters input in order to perforem the relaxation of a structure.
In contarst to the SiestaCalculation plugin, however, the
workchain is able to automatically restart a calculation in case of failure (lack of
electronic-structure or geometry relaxation convergence, termination due to
walltime restrictions, etc).
Therefore, the SiestaBaseWorkChain is the suggested tool to run Siesta calculations
in the AiiDA framework. In fact, it retains the same level of flexibility of the most
general Siesta calculation, but it adds robusness thanks to its ability
to automatically respond to erros.
Examples on the use of the SiestaBaseWorkChain are presented in the folder
/aiida_siesta/examples/workflows.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

Most inputs of the WorkChain are mirroring the siesta plugin inputs. Therefore, more
detailed information on them can be found here.
The only difference is regarding the way the computational resources are passed.
The siesta plugin make use of metadada.options for this task, here, instead, we have
a dedicated input node. This node is the first point in the following list, describing
all the inputs of the WorkChain.


	options, class Dict, Mandatory

Execution options. In this dictionary the computational resources and
scheduler specifications (queue, account, etc ..) must be specified.
An example is:

options = Dict(
     dict={
        'max_wallclock_seconds': 360,
        'withmpi': True,
        'account': 'tcphy113c',
        'queue_name': 'DevQ',
        'resources': {'num_machines': 1,'num_mpiprocs_per_machine': 2},
        }
     )





The resources and max_wallclock_seconds are required by AiiDA, the rest of the options
depend on the scheduler of the machine one is submitting to.






	code,  class Code, Mandatory

A database object representing a Siesta executable. See the plugin documentation for more details.






	structure, class StructureData, Mandatory

A structure. See the plugin documentation for more details.






	parameters, class Dict,  Mandatory

A dictionary with scalar fdf variables and blocks, which are the
basic elements of any Siesta input file. A given Siesta fdf file
can be cast almost directly into this dictionary form, except that
some items (e.g. for structure data) are blocked. Any units are
specified for now as part of the value string. Blocks are entered
by using an appropriate key and Python’s multiline string
constructor. For example:

{
  "mesh-cutoff": "200 Ry",
  "dm-tolerance": "0.0001",
  "%block example-block":
    """
    first line
    second line
    %endblock example-block""",
  ...
}





Note that Siesta fdf keywords allow ‘.’, ‘-‘, or nothing as
internal separators. AiiDA does not allow the use of ‘.’ in
nodes to be inserted in the database, so it should not be used
in the input script (or removed before assigning the dictionary to
the Dict instance). For legibility, a single dash (‘-‘) is suggested, as in the
examples above. See the plugin documentation for more details on the blocked
items.






	pseudos, input namespace of class PsfData
OR class PsmlData, Optional

A dictionary of PsfData  <aiida_siesta.data.psf.PsfData> or
PsmlData  <aiida_siesta.data.psml.PsmlData> objects representing the pseudopotentials for
the calculation. See the plugin documentation for more details.
In contrast to the case of the siesta plugin, the pseudos input
is not mandatory. The SiestaBaseWorkChain supports, in fact, the direct use of
pseudo_family (see below). If pseudos is not in input, a pseudo_family
specification must be used.






	pseudo_family, class Str, Optional

String representing the name of a pseudopotential family stored in the database.
Pseudofamilies can be uploaded in the database via the verdi data psf uploadfamily
or verdi data psml uploadfamily CLI interface.






	basis, class Dict, Optional

A dictionary specifically intended for basis set information. It
follows the same structure as the parameters element, including
the allowed use of fdf-block items. This raw interface allows a
direct translation of the myriad basis-set options supported by the
Siesta program. If not specified, a calculation with only the gamma
point is performed. See the plugin documentation for more details.






	kpoints, class KpointsData, Optional

Reciprocal space points for the full sampling of the BZ during the
self-consistent-field iteration. It must be given in mesh form. There is no support
yet for Siesta’s kgrid-cutoff keyword. See the plugin documentation for more details.
If this node is not present, only the Gamma point is used for sampling.






	bandskpoints, class KpointsData, Optional

Reciprocal space points for the calculation of bands.  They can be
given as a simple list of k-points, as segments with start and end
point and number of points, or as a complete automatic path, using the
functionality of modern versions of the class. See the plugin documentation
for more details.
If this node is not present, no band structure is computed.






	settings, class Dict, Optional

An optional dictionary that activates non-default operations. For a list of possible
values to pass, see the section on advanced features.






	clean_workdir, class Bool, Optional

If true, work directories of all called calculations will be cleaned
out. Default is false.






	max_iterations, class Int, Optional

The maximum number of iterations allowed in the restart cycle for
calculations. The SiestaBaseWorkChain tries to deal with some
common siesta errors (see here <basewc-error>) and restart the calculation with appropriate
modifications. The integer max_iterations is the maximum number
of times the restart is performed no matter what error is recorded.
The input is optional, if not specified, the default Int(5) is used.






	parent_calc_folder, class  RemoteData , Optional

Optional port used to activate the restart features, as explained in the plugin documentation.








Relaxation and bands

As already mentioned in the introduction, in addition to simple scf calculations, the SiestaBaseWorkChain
can be used to perform the relaxation of a structure and the electronic bands calculations.
For the electronic bands, however, we suggest the use of the BandgapWorkChain distributed in this package, because
it adds the feature to automatically calculate the band gap.
Concerning the relaxation of a structure, the SiestaBaseWorkChain simply exploits the internal relaxation
implemented in Siesta in order to complete the task. The full set of a Siesta relaxation options can be
accessed just adding the corresponding keyword and value in the parameters input dictionary. The only additional
feature that the SiestaBaseWorkChain adds is that it requires to reach the target forces and stress
to consider completed the task. If this does not happen in a single Siesta run, the workchain restarts
automatically the relaxation. The maximum number of restarts is specified with the keyword max_iterations,
as explained in the previous subsection.




Submitting the WorkChain

WorkChains are submitted in AiiDA exacly like any other calculation. Therefore:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
from aiida.engine import
builder = SiestaBaseWorkChain.get_builder()
builder.options = options
... All the inputs here ...
submit(builder) #or run





There is no need to set the computational resources with the metadata as they are already
defined in the input options, however builder.metadata.label and builder.metadata.description
could be used to label and describe the WorkChain.
Again, the use of the builder is not mandatory, the inputs can be passed as arguments of
sumbit/run as explained in the siesta plugin section.




Outputs

The outputs of the SiestaBaseWorkChain mirror exactly the one of the siesta plugin.
Therefore all the information can be obtained in the corresponding section.
We list here the outputs.


	output_parameters Dict

A dictionary with metadata and scalar result values from the last
calculation executed.






	output_structure StructureData

Present only if the workchain is modifying the geometry of the system.






	bands, BandsData

Present only if a band calculation is requested (signaled by the
presence of a bandskpoints input node of class KpointsData)
Contains an array with the list of electronic energies for every
kpoint. For spin-polarized calculations, there is an extra dimension
for spin.






	forces_and_stress ArrayData

Contains the final forces (eV/Angstrom) and stresses (GPa) in array form.






	remote_folder, RemoteData

The working remote folder for the last calculation executed. As the SiestaBaseWorkChain
automatically restarts the calculation in case of common failures, the very last
siesta calculation is considered the interesting one for a further manual restart.
Therefore its folder is returned in this node.








Error handling

We list here the errors that are handled by the SiestaBaseWorkChain and the
corresponding action taken. The error are actually detected by the siesta parser,
in the WorkChain, the handling is performed.


	SCF_NOT_CONV

When the convergence of the self-consistent cycle is not reached in max-scf-iterations or
in the allocated max_walltime, siesta raises the SCF_NOT_CONV error.
The SiestaBaseWorkChain is able to detect this error and restart the calculation with no
modifications on the input parameters.






	GEOM_NOT_CONV

When the convergence of the geometry (during a relaxation) is not reached
in the allocated max_walltime, siesta raises the GEOM_NOT_CONV error.
The SiestaBaseWorkChain is able to detect this error and restart the calculation with no
modifications on the input parameters.






	SPLIT_NORM

The SiestaBaseWorkChain deals with problems connected to the basis set creation.
If a “too small split-norm” error is detected, the WorkChains reacts in two ways.
If a global split-norm was defined in input through pao-split-norm, its value is reset to
the minimum acceptable. If no global split-norm was defined the option pao-split-tail-norm = True
is set.





Two more errors are detected by the WorkChain, but not handled at the moment,
only a specific error code is returned as output without attempting a restart.


	BASIS_POLARIZ

If an error on the polarization of one orbital is detected, the error code 403 is returned.
The solution to this problem is to set the “non-perturbative” polarization scheme for the
element that presents an error, however this possibility is available only in recent
versions of AiiDA, making inconvenient to treat automatically the resolution of this error.






	ERROR_BANDS

If a calculation of the electronic bands is requested, but
an error in the parsing of the bands file is detected, the error code 404 is returned.
In this case, the WorkChain will anyway return all the other outputs because the checks
on the bands file are always performed at the very end of the calculation.





The SiestaBaseWorkChain also inherits the error codes of the BaseRestartWorkChain
of the aiida-core distribution. For instance,
if an unexpected error is raised twice, the workchain finishes with exit code 402, if the
maximum number of iterations is reached, error 401 is returned. More in the section
BaseRestartWorkChain [https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/apidoc/aiida.engine.processes.html?highlight=baserestart#aiida.engine.processes.BaseRestartWorkChain] of the aiida-core package.




Protocol system

The protocol system is available for this WorkChain. The SiestaBaseWorkChain.inputs_generator()
makes available all the methods explained in the protocols documentation. For example:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
inp_gen = SiestaBaseWorkChain.inputs_generator()
builder = inp_gen.get_filled_builder(structure, calc_engines, protocol)
#here user can modify builder befor submission.
submit(builder)





is sufficient to submit a SiestaBaseWorkChain on structure following the specifications of
protocols and computational resources collected in calc_engines.
The structure of calc_engines is the same as for the SiestaCalculation input generator
(again see protocols documentation).







          

      

      

    

  

    
      
          
            
  
Bandgap workflow


Description

The BandgapWorkChain is an extension of the SietaBaseWorkChain
that introduces a simple post-process with the scope to return the metallic or
insulating nature of the material and, possibly, the band gap.
The purpose of this WorkChain is mostly educational, showing how easy is
to introduce pre-processes or post-processes in the WorkChain logic.
The class BandgapWorkChain is, in fact, a subclass of the SietaBaseWorkChain
that just overrides few methods and introduces the
additional output band_gap_info.

To calculate the gap, this workchain makes use of a tool distributed in aiida-core,
the method find_bandgap hosted in aiida.orm.nodes.data.array.bands.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

All the SiestaBaseWorkChain inputs are as well inputs of the BangapWorkChain,
therefore the system and DFT specifications (structure, parameters, etc.) are
inputted in the WorkChain using the same syntax explained in the SiestaBaseWorkChain
documentation.
The only difference is that the bandskpoints are now a mandatory input and the WorkChain
will rise an error if they are not present.




Outputs


	All the outputs of SiestaBaseWorkChain are also outputs of this
WorkChain, they can be explored in the relative section of the SiestaBaseWorkChain.





	band_gap_info Dict

A dictionary containing a bool (is_insulator) set to True if the material has a band gap,
to False otherwise. Moreover the dictionary contains the value of the gap in eV.








Protocol system

The protocol system is available for this WorkChain. The BandgapWorkChain.inputs_generator()
makes available all the methods explained in the protocols documentation, the
only difference is that here is mandatory to pass bands_path_generator to get_filled_builder and
not optional like for the SietaBaseWorkChain inputs generator.







          

      

      

    

  

    
      
          
            
  
Equation Of State workflow


Description

The EqOfStateFixedCellShape WorkChain is a tool for the calculation of
the equation of state of a solid.
Density Functional Theory (DFT) calculations with the SIESTA code are performed at
7 equidistant volumes around a starting volume in order to obtain the energy (E)
versus volume (V) data.
The starting volume is an optional input of the WorkChain, called volume_per_atom.
If the latter is not specified, the input structure volume is use as starting volume.
The WorchChain ensure robustness in the convergence of each SIESTA calculation thanks to
the fact that each DFT run is submitted through the SiestaBaseWorkChain,
that automatically manages some common failures (lack of
electronic-structure or geometry relaxation convergence, termination due to
walltime restrictions, etc).
All the SiestaBaseWorkChain inputs are as well inputs of the EqOfStateFixedCellShape,
therefore the system and DFT specifications (structure, parameters, etc.) are
inputted in the WorkChain using the same syntax explained in the SiestaBaseWorkChain
documentation.
As the name of the class suggest, the EqOfStateFixedCellShape is designed to
obtain the E(V) curve under the restriction of fixed cell shape.
This means that no algorithm for stress minimization is implemented in the WorkChain.
However the option relaxation MD.ConstantVolume (see SIESTA manual)
might be added into the parameters
dictionary to let SIESTA to relax the structure at fixed volume.
There is no point, for obvious reasons, to run this WorkChain with the
relaxation option MD.VariableCell.
This WorkChain also tries to perform a Birch_Murnaghan fit
on the calculated E(V) data, following the DeltaProject [https://github.com/molmod/DeltaCodesDFT/blob/master/eosfit.py] implementation.
If the fit fails, a warning is stored in the report of the WorkChain
(accessible through verdi process report <PK>), but the E(V) data for the 7 volumes
are always returned, leading to a succesfull termination of the process.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs


	All the inputs of the SiestaBaseWorkChain, as explained
here.





	volume_per_atom, class Float, Optional

A decimal number corresponding to the volume per atom around which to
perform the equation of state.






	batch_size, class Int, Optional

Number of volumes to run at the same time. By default, it is set to one,
therefore one volume at the time is submitted








Outputs


	results_dict Dict

A dictionary containing a key eos_data that collects the computed E(V) values and relative
units of measure.
If the Birch-Murnaghan fit is succesfull, also the key fit_res will be present in this disctionary.
It reports the following values extracted from the fit: the equilibrium
volume (Vo, in Angstom^3/atom), the minimum energy (Eo, in eV/atom), the Bulk Modulus
(Bo, in ev/Angstrom^3) and its derivative respect to the presure B1.






	equilibrium_structure StructureData

Present only if the Birch-Murnaghan fit is succesfull, it is the AiiDA structure
at the equilibrium volume Vo.








Protocol system

The protocol system is available for this WorkChain. The EqOfStateFixedCellShape.inputs_generator()
makes available all the methods explained in the protocols documentation, the
only difference is that the relaxation type “variable-cell” is not available.







          

      

      

    

  

    
      
          
            
  
STM workflow


Description

The SiestaSTMWorkchain workflow consists in 3 steps:


	Performing of a siesta calculation on an input structure (including relaxation if needed)
through the SiestaBaseWorkChain.


	Performing of a further siesta calculation aimed to produce a .LDOS file.


	A call to the plstm code to post process the .LDOS file and
create simulated STM images. The call is made via the
STMCalculation plugin, which is also included in the aiida_siesta distribution.




The .LDOS file contains informations on the local density
of states (LDOS) in an energy window. The LDOS can be seen as a
“partial charge density” to which only those wavefunctions with
eigenvalues in a given energy interval contribute. In the
Tersoff-Hamann approximation, the LDOS can be used as a proxy for the
simulation of STM experiments. The 3D LDOS file is then processed by the
specialized program plstm to produce a 2D section in “constant-height” or
“constant-current” mode, optionally projected on spin components
(see the header/manual for plstm, and note that non-collinear and spin-orbit
modes are supported).
The “constant-height” mode corresponds to the creation of
a plot of the LDOS in a 2D section at a given height in the unit cell
(simulating the height of a STM tip). The “constant-current” mode
simulates the topography map by recording the z
coordinates with a given value of the LDOS.

The inputs to the STM workchain include all the inputs of the SiestaBaseWorkChain
to give full flexibility on the choice of the siesta calculation
parameters. The energy window for the LDOS is specified respect to the Fermi energy.
In fact, a range of
energies around the Fermi Level (or regions near to the HOMO and/or
LUMO) are the meaninful energies for the STM images production.
The tip height (“constant-height” mode) or the LDOS iso-value (“constant-current” mode)
must be specified by the user in input.
The workchain returns an AiiDA ArrayData object whose
contents can be displayed by standard tools within AiiDA and the wider
Python ecosystem.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs


	All the inputs of the SiestaBaseWorkChain, as explained
here.





	stm_code, class Code, Mandatory

A code associated to the STM (plstm) plugin (siesta.stm). See plugin documantation for more details.






	stm_mode, class Str, Mandatory

Allowed values are constant-height or constant-current, corresponding to the two
operation modes of the STM that are supported by the plstm code.






	stm_value, class Float, Mandatory

The value of height or current at which the user wants to simulate the
STM. This value represents the tip height in “constant-height” mode
or the LDOS iso-value in “constant-current” mode.
The height must be expressed in Angstrom, the current in e/bohr**3.






	emin, class Float, Mandatory

The lower limit of the energy window for which the LDOS is to be
computed (in eV and respect to the Fermi level).






	emax, class Float, Mandatory

The upper limit of the energy window for which the LDOS is to be
computed (in eV and respect to the Fermi level).






	stm_spin, class Str, Mandatory

Allowed values are none, collinear or non-collinear.
Please note that this keyword only influences the STM post process!
It does not change the parameters of the siesta calculation, that must
be specified in the parameters input port.
In fact, this keyword will be automatically reset if a stm_spin
option incompatible with the parent siesta spin option is chosen.
A warning will be issued in case this happens.
This keyword also influences the structure of the output port
stm_array. If fact, if the non-collinear value is chosen, the
workflow automatically performs the STM analysis in the three
spin components and for the total charge option, resulting in a
richer stm_array (see description in the Outputs section).






	stm_options, class Dict, Optional

This dictionary can be used to specify the computational resources to
be used for the STM calculation (the plstm code). It is optional
because, if not specified, the same resources of the siesta calculations
are used, except that the parallel options are stripped off.
In other words, by default, the plstm code runs on a single processor.








Outputs


	stm_array ArrayData

In case the stm_spin is none or collinear this output port
is a collection of three 2D arrays (grid_X, grid_Y, STM) holding the section or
topography information. Exactly like the output of the STM plugin.
In case the stm_spin is non-collinear, this output port
is a collection of six 2D arrays (grid_X, grid_Y, STM_q, STM_sx, STM_sy, STM_sz)
holding the section or topography information for the total charge STM analysis and
the three spin components.
Both cases follow the meshgrid convention in
Numpy. A contour plot can be generated with the get_stm_image.py
script in the repository of examples. The get_stm_image.py script
automatically detects how many arrays are in stm_array, therefore it is
completely general.






	output_structure StructureData

Present only if the siesta calculation is moving the ions.  Cell and ionic
positions refer to the last configuration, on which the STM analysis is performed.








Protocol system

The protocol system is available for this WorkChain. The SiestaSTMWorkchain.inputs_generator()
makes available all the methods explained in the protocols documentation, but
get_filled_builder now requires in inputs also the stm_mode (a python str <str>, accepted values
are “constant-height” and “constant-current”) and stm_value (a python float <float> indicating
the value of height in Ang or current in e/bohr**3).
Moreover in the calc_engines dictionary, also indications on the resources for the stm calculation must
specified, following the syntax of this example:

calc_engines = {
  'siesta': {
      'code': codename,
      'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1}, "max_wallclock_seconds": 3600 }
      },
  'stm': {
      'code': stmcodename,
      'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1}, "max_wallclock_seconds": 1360 }
      }
  }





The STM spin mode is chosen accordingly to the spin input passed to get_filled_builder,
setting “collinear” stm_spin in case of polarized calculation, “non-collinear” in case of
“spin-orbit” or “non-collinear” calculations and no spin in case of an unpolarized calculation.
Therefore, if, for instance, the user wants to post-process a spin calculation with “no-spin”
STM mode, he/she needs to manually modify the builder before submission.
Also the emin and emax inputs of SiestaSTMWorkchain are internally chosen
by the inputs generator: they select an energy window of 6 eV below the Fermi energy.
If the choice doesn’t suit the purpose, the user can manually modify the builder before
submission.







          

      

      

    

  

    
      
          
            
  
Iterator workflow


Description

The SiestaIterator is a tool to facilitate the submission of several Siesta Calculations
in an automatic way. It allows the iteration over Siesta parameters
and, more in general, over inputs of a SiestaBaseWorkChain.
An example on the use of the SiestaConverger is
/aiida_siesta/examples/workflows/example_iterate.py.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

All the SiestaBaseWorkChain inputs are as well inputs of the SiestaIterator,
therefore the system and DFT specifications (structure, parameters, etc.) are
inputted in the WorkChain using the same syntax explained in the SiestaBaseWorkChain
documentation.
The additional inputs are:


	iterate_over, class Dict, Mandatory

A dictionary where each key is the name of a parameter we want to iterate
over (str) and each value is a list with all the values to iterate over for
the corresponding key.
Accepted keys are:


	Name of the input ports of the SiestaBaseWorkChain. Meaning all the names listed
here.
In this case, the corresponding values list must contains the list of Data
nodes (stored or unstored) accepted by the key. Examples are:

code1 = load_code("SiestaHere@localhost")
code2 = load_code("SiestaThere@remotemachine")
iterate_over = {"code" : [code1,code2]}

struct1 = StructureData(ase=ase_struct_1)
struct2 = StructureData(ase=ase_struct_2)
iterate_over = {"structure" : [struct1,struct2]}







	Name of accepted Siesta input keywords (for instance mesh-cutoff, pao-energy-shift, etc …).
In this case, the corresponding values list must contains the list of values directly, meaning
str, float, int or bool
python types. Examples are:

iterate_over = {"spin" : ["polarized", "spin-orbit"]}






Warning

In order to guarantee full flexibility, no check on the Siesta parameters is performed. If you pass as key something not recognized by Siesta, the SiestaIterator will include it in the parameters input and run the calculation with no warning issued. Because Siesta will not understand the keyword, it will ignore it, resulting in a series of identical calculations.







The iterate_over is a dictionary because it is possible to iterate over several keywords at
the same time. Something of this kind:

struct1 = StructureData(ase=ase_struct_1)
struct2 = StructureData(ase=ase_struct_2)
iterate_over = {"structure" : [struct1,struct2], "spin" : ["polarized", "spin-orbit"]}





is perfectly acceptable and the way the algorithm handle with these multiple iterations is decided
by the SiestaIterator input explained next in this list.






	iterate_mode, class Str, Optional

Indicates the way the parameters should be iterated. Currently allowed values are
‘zip’ (zips all the parameters together, this imposes that all keys should
have the same number of values in the list!) and ‘product’ (performs a cartesian product of the
parameters, meaning that all possible combinations of parameters and values are explored).

The option ‘zip’ is the default one.






	batch_size, class Int, Optional

The maximum number of simulations that should run at the same time.
You can set this to a very large number if you want that all simulations run in
one single batch. As default, only one single calculation at the time is submitted.








Outputs

This WorkChain does not generate any output! It is, in fact, a tool to help the
submission of multiple calculations and keep them all connected and easy accessible
through the main workchain node, but it does not have any precise scope.
AiiDA provides a powerful querying system [https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/data.html#finding-and-querying-for-data] to explore all the results of the submitted calculations
and a tool to organize the data [https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/data.html#organizing-data].




Protocol system

The protocol system is not directly available for this WorkChain.
However inputs of the SiestaBaseWorkChain can be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator()
inputs = inp_gen.get_inputs_dict(structure, calc_engines, protocols)





The inputs of get_inputs_dict are explained in the protocols documentation.
Then the user must define at least the input iterate_over in order to be able to submit
the SiestaIterator WorkChain.







          

      

      

    

  

    
      
          
            
  
Converger workflow


Description

The SiestaConverger is a tool to facilitate convergence tests with Siesta.
It extends the SiestaIterator to accept a target quantity that is checked
after each step to evaluate whether convergence has been reached or not.
The convergence check just consists in calculating the difference in the target quantity
between the present step and the step before and comparing it with a threshold value
passed by the user in input.
An example on the use of the SiestaConverger is
/aiida_siesta/examples/workflows/example_convergence.py.




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

All the SiestaIterator inputs are as well inputs of the SiestaConvereger,
they are described in the corresponding
documentation.
Additional inputs are:


	target, class Str, Optional

The parameter the user wants to track in order to check if convergence has been reached.
All the quantities returned in the output_parameters dictionary of the SiestaBaseWorkChain
are accepted for this scope, excluding keys that don’t have a float or int as a value.
Typical values are the Kohn-Sham
(E_KS), Free (FreeE), Band (Ebs), and Fermi (E_Fermi)
energies, and the total spin (stot); however the user might also think to converge
calculations-time related quantities.

The E_KS is the default value.






	threshold, class Float, Optional

The maximum difference between two consecutive steps to consider that convergence is reached.
Default is Float(0.01).








Outputs

The following outputs are returned:


	converged Bool

Returning True or False, whether the target has converged or not.






	converged_target_value Float

The value of the target when the convergence has been reached. Returned only if
the convergence is succesfull.






	converged_parameters Dict

The values for the parameters that was enough to achieve convergence.
If converged is not achieved, it won’t be returned.








Protocol system

The protocol system is not directly available for this WorkChain.
However inputs of the SiestaBaseWorkChain can be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator()
inputs = inp_gen.get_inputs_dict(structure, calc_engines, protocols)





The inputs of get_inputs_dict are explained in the protocols documentation.
Then the user must define at least the input iterate_over in order to be able to submit
the SiestaConverger WorkChain (if no target is specified, the E_KS is used).







          

      

      

    

  

    
      
          
            
  
Sequential Converger workflow


Description

The SiestaSequentialConverger is an iterator that sequentially runs SiestaConvergers.
Once the convergence over a parameter is reached, the converged value is used for the
following convergence test (on a new parameter).
An example on the use of the SiestaConverger is
/aiida_siesta/examples/workflows/example_seq_converger.py




Supported Siesta versions

At least 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which
can be found in the development platform
(https://gitlab.com/siesta-project/siesta).
For more up to date info on compatibility, please check the
wiki [https://github.com/albgar/aiida_siesta_plugin/wiki/Supported-siesta-versions].




Inputs

Two are the required inputs:


	converger_inputs, class dict, Mandatory

A dictionary containing all the inputs required by the SiestaConverger, except the
iterate_over port. The explanations of the converger inputs can be examined
here <siesta-converger-inputs>. Please note that the normal inputs of a SiestaBaseWorkChain
process (structure, parameters, basis, code, …) must be included as well in this dictionary.

The same default values as SiestaConverger apply if some ports are not specified here.






	iterate_over, class list, Mandatory

There is a specific port for the quantities to iterate over and now the accepted value for
this port is a list, not a dictionary like it was for the SiestaConverger or SiestaIterator.
In fact, now the user should indicate a list of parameters that he/she wants to converge
sequentially.
A practical example:

iterate_over=[
   {
    'kpoints_0': [4,10,12,14,16,18,20],
    'kpoints_1': [4,10,12,14,16,18,20],
    'kpoints_2': [4,10,12,14,16,18,20],
   },
   {
    'meshcutoff': ["500 Ry", "600 Ry", "700 Ry", "800 Ry", "900 Ry"],
   },
   {
    'pao-energyshift': ["0.02 Ry", "0.015 Ry", "0.01 Ry", "0.005 Ry", "0.001 Ry"]
   }
]





With this specification, we signal that we want to converge first the kpoints by increasing all components
at the same time (assuming “zip” is selected as ‘iterate_mode’ in the converger_inputs dictionary),
then the ‘meshcutoff’ and finally the ‘energy shift’. The converged kpoints will be used for the convergence
of ‘meshcutoff’, the converged kpoints and ‘meshcutoff’ will be used for the convergence process of ‘energy shift’.

Note that one can converge the same parameters again if wanted,
for instance set up different rounds for kpoints convergence.








Outputs

The following outputs are returned:


	converged_target_value Dict

The value of the target when the convergence has been reached. Returned only if
the convergence is succesfull.






	converged_parameters Dict

The values for the parameters that was enough to achieve convergence.
If converged is not achieved, it won’t be returned.








Protocol system

The protocol system is not directly available for this WorkChain.
However inputs of the SiestaBaseWorkChain can be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator()
inputs = inp_gen.get_inputs_dict(structure, calc_engines, protocols)





The inputs of get_inputs_dict are explained in the protocols documentation.
Then the user can place these inputs in the converger_inputs dictionary (together with the other
SiestaConverger inputs specifications). The input iterate_over is also required
in order to be able to submit the SiestaSequentialConverger WorkChain and it must be set manually.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/comment-bright.png





_images/MaX.png
DRIVING
THE EXASCALE
TRANSITION





_static/ajax-loader.gif





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to the AiiDA-Siesta documentation!
        


        		
          Installation
          
            		
              For developers
            


          


        


        		
          Calculations
          
            		
              Siesta calculations
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Submitting the calculation
                


                		
                  Outputs
                


                		
                  Errors
                


                		
                  Restarts
                


                		
                  Additional advanced features
                


              


            


            		
              STM calculations
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Submitting the calculation
                


                		
                  Outputs
                


                		
                  Errors
                


              


            


          


        


        		
          Utils
          
            		
              The protocols system
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Available protocols
                


                		
                  How to use protocols
                


                		
                  How to create my protocols
                


              


            


            		
              FDF dictionary
              
                		
                  Description
                


              


            


          


        


        		
          Workflows
          
            		
              Base workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Relaxation and bands
                


                		
                  Submitting the WorkChain
                


                		
                  Outputs
                


                		
                  Error handling
                


                		
                  Protocol system
                


              


            


            		
              Bandgap workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


            		
              Equation Of State workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


            		
              STM workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


            		
              Iterator workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


            		
              Converger workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


            		
              Sequential Converger workflow
              
                		
                  Description
                


                		
                  Supported Siesta versions
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Protocol system
                


              


            


          


        


      


    
  

_images/MARVEL.png
MARVEL





_images/MINECO-AEI.png
HNSTERID 2

DE ECONOMIA, INDUSTRIA
Y COMPETITIVIDAD





