AiiDA Siesta Plugin Documentation
Release 2.0.0

V.M. Garcia-Suarez, A. Garcia, E. Bosoni, V. Dikan, P. Febrer

Jul 17, 2022

Contents

1 Acknowledgments: 3
2 Contents: 5
2.1 Installation e e e 5
2.1.1 Installation and dependenceso e e e e e e e 5
2.1.1.1 Fordevelopers i i e e e e e e 6

22 Calculation plugins L. e e 6
22,1 Calculationso e e e e e e 6
2.2.1.1 Siestacalculationso 6

2.2.1.2 STMecalculations e e 16

23 ULHLES o o e e e e 18
23,1 Utls . . o e e 18
2.3.1.1 Theprotocols System e 18

2.3.1.2 FDFdictionaryo v i e e e e e e 23

2.3.1.3 PAOMANager i i e e e e e e e e e e e e e 23

24 Workflows e 24
241 Workflows L e e e e e 24
24.1.1 Baseworkflow oL e 24

24.1.2 Bandgapworkflow 27

2.4.1.3 Equation Of State workflow 28

2414 STMworkflow oL 29

24.1.5 Tterator workflow Lo 32

24.1.6 Convergerworkflow L o 33

2.4.1.7 Sequential Converger workflow oL 0oL 35

24.1.8 Basisoptimizationo e e e e 36

24.19 Epsilonworkflow e 41

24.1.10 NEBBaseworkflow 42

2.5 Tutorials ... e e e 43
251 Tutorials L e e e e e e e e e 43
2.5.1.1 2020, ICN2, Barcelona, Spain e 43

2.5.1.2 2021, Virtual event e e e e e 51

AiiDA Siesta Plugin Documentation, Release 2.0.0

The aiida-siesta python package interfaces the SIESTA DFT code (https://siesta-project.org/siesta/) with the AiiDA
framework (http://www.aiida.net). The package contains: plugins for SIESTA itself and for other utility programs,
new data structures, and basic workflows. It is distributed under the MIT license and available from (https://github.
com/siesta-project/aiida_siesta_plugin). If you use this package, please cite J. Chem. Phys. 152, 204108 (2020)
(https://doi.org/10.1063/5.0005077).

Contents 1

https://siesta-project.org/siesta/
http://www.aiida.net
https://github.com/siesta-project/aiida_siesta_plugin
https://github.com/siesta-project/aiida_siesta_plugin
https://doi.org/10.1063/5.0005077

AiiDA Siesta Plugin Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Acknowledgments:

The Siesta input plugin was originally developed by Victor M. Garcia-Suarez.

Alberto Garcia further improved the Siesta input plugin and wrote the parser for Siesta and the STM plugin.
Emanuele Bosoni contributed the band-structure support for the Siesta plugin.

Vladimir Dikan and Alberto Garcia developed the workflows and refined the architecture of the package.

Vladimir Dikan and Emanuele Bosoni ported the plugin and the base workflow to AiiDA 1.0. Alberto Garcia futher
refined the 1.0-compatible functionality.

From November 2019 to May 2022, Emanuele Bosoni was in charge of the code’s development and maintenance,
under the supervision of Alberto Garcia.

Pol Febrer contributed the Siestalterator and SiestaConverger workflows, including the underline abstract classes sys-
tem.

This work is supported by the MaX European Centre of Excellence funded by the Horizon 2020 INFRAEDI-2018-1
program, Grant No. 824143, and by the INTERSECT (Interoperable material-to-device simulation box for disruptive
electronics) project, funded by Horizon 2020 under grant agreement No 814487, as well as by the Spanish MINECO
(projects FIS2012-37549-C05-05 and FIS2015-64886-C5-4-P)

We thank the AiiDA team, who are also supported by the MARVEL National Centre for Competency in Research
funded by the Swiss National Science Foundation

DRIVING
THE EXASCALE
TRANSITION

http://www.max-centre.eu/
https://intersect-project.eu/
http://nccr-marvel.ch
http://www.snf.ch/en
http://www.max-centre.eu/

AiiDA Siesta Plugin Documentation, Release 2.0.0

e

SINTERSECT

L

7,
MINISTERIO

DE ECONOMIA, INDUSTRIA

¥ COMPETITIVIDAD e

MARVEL
O00@®

MATIONAL CENTRE OF COMPETEMCE IM RESEARCH

4 Chapter 1. Acknowledgments:

http://intersect-project.eu/
http://www.mineco.gob.es/
http://nccr-marvel.ch

CHAPTER 2

Contents:

2.1 Installation

2.1.1 Installation and dependences

It would be a good idea to create and switch to a new python virtual environment before the installation.

The latest release of the package can be obtained simply with:

pip install aiida-siesta

In this case, make sure to refer to the appropriate documentation part (“stable”, not “latest”).

Because the package is under development, in order to enjoy the most recent features one can clone the github reposi-
tory (https://github.com/siesta-project/aiida_siesta_plugin) and install from the top level of the plugin directory with:

pip install -e .

As a pre-requisite, both commands above will install an appropriate version of the aiida-core python framework,
if this is not already installed. In case of a fresh install of aiida-core, follow the AiiDA documentation in order to
configure aiida.

Important: In any case, do not forget to run the following commands after the installation:

reentry scan -r aiida
verdi daemon restart

Since version 1.2.0, aiida—-siesta also depends on sisl (https://github.com/zerothi/sisl). For the moment sisl
is used only to facilitate the management of basis orbitals, but a closer integration among the two packages is foreseen
in the future.

https://github.com/siesta-project/aiida_siesta_plugin
https://aiida.readthedocs.io/projects/aiida-core/en/stable/
https://github.com/zerothi/sisl

AiiDA Siesta Plugin Documentation, Release 2.0.0

2.1.1.1 For developers
This plugin is open-source and contributions are welcomed. Before starting the development, the following steps are
suggested:

* After cloning from github, install with pip install . [dev]. This will download all the tools for testing.

¢ Install pre-commit hooks. This will “force” to follow some python standards we require. In fact, the hooks will
impede to commit unless the required standards are met.

* Make sure to run all the tests (simply pytest test/ from the main folder of the package) to make sure the
contribution is not breaking any part of the code. Ideally, write tests for the new part implemented.

2.2 Calculation plugins

2.2.1 Calculations

This section contains the documentation for the calculations plugins distributed in aiida-siesta. They are the
fundamental blocks that enable to run through AiiDA some executable of the Siesta package, meaning the siesta code
itself and some post-processing tools. For each calculation, we explain the inputs selection, the submission command
and the returned outputs. From the AiiDA prospective, we describe here the functionalities of both the CalcJob class
and the associated parser.

2.2.1.1 Siesta calculations

Description

A plugin for Siesta main code. It allows to prepare, submit and retrieve the results of a standard siesta calculation,
including support for the parsing of the electronic bands and the output geometry of a relaxation. It is implemented in
the class SiestaCalculation.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

Some examples are referenced in the following list. They are located in the folder aiida_siesta/examples/plugins/siesta.
* code, class Code, Mandatory

A code object linked to a Siesta executable. If you setup the code Siesta4.0.1 on machine kelvin follow-
ing the aiida guidelines, then the code is selected in this way:

codename = 'Siestad4.0.l@kelvin'
from aiida.orm import Code
code = Code.get_from_string(codename)

6 Chapter 2. Contents:

https://pre-commit.com/#install
https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions
https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/run_codes.html

AiiDA Siesta Plugin Documentation, Release 2.0.0

* structure, class St ructureData, Mandatory

A structure. Siesta employs “species labels” to implement special conditions (such as basis set characteristics)
for specific atoms (e.g., surface atoms might have a richer basis set). This is implemented through the name
attribute of the Site objects. For example:

from aiida.orm import StructureData

alat = 15. # angstrom
cell [[alat, 0., O0.,],
[0., alat, 0.,1,
[0., 0., alat,],
]

Benzene molecule with a special carbon atom
= StructureData (cell=cell)
.append_atom (position=(0.000,0.000,0.468),symbols=["H'"])
.append_atom (position=(0.000,0.000,1.620),symbols=["'C"'])
.append_atom (position=(0.000,-2.233,1.754),symbols=["H"])
.append_atom(position .000,2.233,1.754) ,symbols=["H'])
.append_atom (position .000,-1.225,2.327) ,symbols="C"',name="Cred")
.append_atom (position .000,1.225,2.327),symbols=["'C"])
.append_atom(position .000,-1.225,3.737),symbols=["'C"])

(

(

(

(

(

.append_atom (position .000,1.225,3.737),symbols=["'C"])
.append_atom (position .000,-2.233,4.311),symbols=["H'])
.append_atom(position .000,2.233,4.311) ,symbols=["H'])
.append_atom(position .000,0.000,4.442),symbols=["'C"])
.append_atom (position=(0.000,0.000,5.604),symbols=["H'"])

n n n n n n 0o o n n n n n E

0
0
0
0
0
0
0
0
0
0

(0
(
(
(
(
(
(
(
(
(
(

The class StructureData uses Angstrom as internal units, the cell and atom positions must be specified in
Angstrom.

The StructureData can also import ase structures or pymatgen structures. These two tools can be used to
load structure from files. See example example_cif_bands.py.

Note: Siesta can handle ghost atoms, carrying only extra orbitals, to increase the variational freedom. In the
AiiDA plugin, these ghost atoms are specified in the basis dictionary (see below), and they should not be part
of the input StructureData object.

* parameters, class Dict, Mandatory

A dictionary with scalar fdf variables and blocks, which are the basic elements of any Siesta input file. A given
Siesta fdf file can be cast almost directly into this dictionary form, except that some items are blocked. The
blocked keywords include the system information (system—-label, system—name) and all the structure
information as they will be automatically set by Aiida. Moreover, the keyword dm-use-save-dm is not
allowed (the restart options are explained /ere) together with the keyword geomet ry-must-converge (set
to True by default for each calculation with variable geometry). Also the max-walltime is blocked since it
is set by the plugin to be equal to the max_wallclock_seconds passed in the computational resources.
This should prevent the calculation to be terminated by the scheduler. In case a siesta max time smaller than
the max_wallclock_seconds is required, it is suggested to increase the max-walltime-slack value.
Finally, all the pao and optical options must be avoided here, because they belong to the basis and optical
inputs respectively (see following of the list). Any units are specified for now as part of the value string. Blocks
are entered by using an appropriate key and Python’s multiline string constructor. For example:

from aiida.orm import Dict

(continues on next page)

2.2. Calculation plugins 7

AiiDA Siesta Plugin Documentation, Release 2.0.0

(continued from previous page)

parameters = Dict (dict={
"mesh-cutoff": "200 Ry",
"dm-tolerance": "0.0001",

"$block example-block":
first line
second line
sendblock example-block""",

})

Note that Siesta fdf keywords allow ‘.’, *-’, (or nothing) as internal separators. AiiDA does not allow the use
of *” in nodes to be inserted in the database, so it should not be used in the input script (or removed before
assigning the dictionary to the Dict instance). For legibility, a single dash (*-’) is suggested, as in the examples
above. Moreover, because the parameters are passed through a python dictionary, if, by mistake, the user passes
the same keyword two (or more) times, only the last specification will be considered. For instance:

parameters = Dict (dict={
"mesh-cutoff": "200 Ry",
"mesh-cutoff": "300 Ry",

})

will set a mesh—-cutoff of 300 Ry. This is the opposite respect to what is done in the Siesta code, where the
first assignment is the selected one. Please note that this applies also to keywords that correspond to the same
fdf variable. For instance:

parameters = Dict (dict={
"mesh-cutoff": "200 Ry",
"Mesh-Cut-off": "300 Ry",

})

will run a calculation with mesh-cutof £ equal to 300 Ry, whithout raising any error.
¢ basis, class Dict, Optional

A dictionary specifically intended for basis set information. It follows the same structure as the parameters
element, including the allowed use of fdf-block items. This raw interface allows a direct translation of the
myriad basis-set options supported by the Siesta program. In future we might have a more structured input for
basis-set information. An example:

from aiida.orm import Dict

basis_dict = {
'pao-basistype':'split',
'pao-splitnorm': 0.150,
'pao—energyshift': '0.020 Ry',
'$block pao-basis—-sizes':

mmwn

C SzPp

Cred SZ

H SzZP

%endblock pao—-basis—-sizes""",
}

basis = Dict (dict=basis_dict)

In case no basis is set (and no ions is passed in input), the Siesta calculation will not include any basis specifi-
cation and it will run with the default basis: DZP plus (many) other defaults.

8 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

The basis dictionary also accepts a special key called floating_sites that can be used to specify the
location and kind of ghost atoms, or sites carrying only floating orbitals. The associated value must be a list
of dictionaries and each dictionary must include as keys at least the name, symbols and position of the
floating site. An example is:

basis = Dict (dict={

'floating_sites': [{"name":'Si_bond', "symbols":'Si', "position":(0.125,
—0.125, 0.125)}1,

'$block pao-basis-sizes':

Si_bond SZ

%endblock pao-basis—-sizes""",

b

The “position” must be specified in Angstrom. A “name” that corresponds to an existing atomic site is forbidden.
As shown in the example, in case a basis specification has to be added for one or more floating_sites,it
must be included in the basis dictionary in the same way as those for any other atomic kinds. Please look at the
examples example_ghost.py and example_ghost_relax.py for a practical example.

* pseudos, input namespace of class PsfData OR class PsmlData, Optional
This input is mandatory except if the ions input is set (see below).

This inputs exploits the functionalities of the PsfData <aiida_pseudo.data.pseudo.psf.PsfData> and PsmlData
<aiida_pseudo.data.pseudo.psml.PsmlData> of the aiida-pseudo package.

One pseudopotential file per atomic element is required. Several species (in the Siesta sense, which allows the
same element to be treated differently according to its environment) can share the same pseudopotential. For
the example above:

import os
from aiida_pseudo.data.pseudo.psf import PsfData

pseudo_file_to_species_map = [("C.psf", ['C', 'Cred']), ("H.psf", ['H'])]
pseudos_dict = {}
for fname, kinds, in pseudo_file_to_species_map:
absname = os.path.realpath(os.path.join("path/to/file", fname))
pseudo = PsfData.get_or_create (absname)
for j in kinds:
pseudos_dict [j]=pseudo

Alternatively, a pseudo for every atomic species can be set from a family of pseudopotentials:

from aiida.orm import Group
family = Group.get (label=FAM_NAME)
pseudos = family.get_pseudos (structure=s)

where s is a StructureData <aiida.orm.StructureData> object and FAM_NAME is the name of the pseudopoten-
tials family, that must be installed in the database.

The simplest way to install a pseudo family is through the command:

aiida-pseudo install family /PATH/TO/FOLDER/ FAM NAME -P pseudo.psf #or pseudo.
—psml

where /PATH/TO/FOLDER/ is a folder containing the pseudos. The aiida-pseudo package allows more so-
phisticated ways of creating pseudo family, for instance downloading the pseudos directly from a url or online
repository (PseudoDojo for instance). Please refer to the corresponding documentation for more details.

For a practical example, look at example_psf family.py.

2.2. Calculation plugins 9

https://github.com/aiidateam/aiida-pseudo
https://github.com/aiidateam/aiida-pseudo

AiiDA Siesta Plugin Documentation, Release 2.0.0

* ions, input namespace of class TonData, Optional

The class lonData <aiida_siesta.data.ion.lonData> has been implemented along the lines of the PsfData class
to carry information on the entity that in siesta terminology is called “ion”, and that packages the set of ba-
sis orbitals and KB projectors for a given species. It contains also some extra metadata. The class lonData
stores “.ion.xml” files and it also provides a method getr_content_ascii_format that translates the content of an
“.ion.xml” into an “.ion” file format, which is the only one currently accepted by Siesta.

When this input is present, the plugin takes care of coping in the running folder the “.ion” files and set the
“user_basis” siesta keyword to True. Moreover, when this input is present, pseudos and basis inputs are ignored
(except possible floating_orbitals defined in the basis).

One ion file per atomic element is required and must be passed to the calculation in a way similar to the pseudos.
For instance:

import os
from aiida_siesta.data.ion import IonData

ion_file_to_species_map = [("C.ion", ['C']), ("H.ion", ['H'])]
ions_dict = {}
for fname, kinds, in ion_file_to_species_map:
absname os.path.realpath (os.path. join("path/to/file", fname))
ion = IonData.get_or_create (absname)
for j in kinds:

ions_dict[j]l=1ion

The example_ion.py can be analyzed to better understand the use of ions inputs.
* kpoints, class KpointsData, Optional

Reciprocal space points for the full sampling of the BZ during the self-consistent-field iteration. It must be given
in mesh form. There is no support yet for Siesta’s “kgrid-cutoff” keyword:

from aiida.orm import KpointsData
kpoints=KpointsData ()
kp_mesh = 5

mesh_displ = 0.5 #optional
kpoints.set_kpoints_mesh ([kp_mesh, kp_mesh, kp_mesh], [mesh_displ,mesh_displ,mesh_
—displ])

The class KpointsData <aiida.orm.KpointsData> also implements the methods

set_cell_from_structure and set_kpoints_mesh_from_density that allow to obtain a
uniform mesh automatically.

If this node is not present, only the Gamma point is used for sampling.
* bandskpoints, class KpointsData, Optional

Reciprocal space points for the calculation of bands. The full list of kpoints must be passed to
bandskpoints and they must be in units of the reciprocal lattice vectors. There is no obligation to set
the cell in bandskpoints, however this might be useful in order to exploit the functionality of the class
KpointsData. If set, the cell must be the same of the input structure. Some examples on how to pass the
kpoints are the following.

One can manually listing a set of isolated kpoints:

from aiida.orm import KpointsData
bandskpoints=KpointsData ()

kpp = [(0.1, 0.1, 0.1), (0.5, 0.5, 0.5), (0., 0., 0.)1]
bandskpoints.set_kpoints (kpp)

10

Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

In this case the Siesta input will use the “BandPoints” block.

Alternatively (recommended) the high-symmetry path associated to the structure under investigation can be
automatically generated through the aiida tool get_explicit_kpoints_path. Here how to use it:

from aiida.orm import KpointsData

bandskpoints=KpointsData ()

from aiida.tools import get_explicit_kpoints_path

symmpath_parameters = Dict (dict={'reference_distance': 0.02})

kpresult = get_explicit_kpoints_path(s, x*symmpath_parameters.get_dict())
bandskpoints = kpresult|['explicit_kpoints']

Where ‘s’ in the input structure and reference_distance is the distance between two subsequent kpoints.
In this case the block “BandLines” is set in the Siesta calculation.

Warning: “SeeK-path” might modify the structure to follow particular conventions and the generated
kpoints might only apply on the internally generated ‘primitive_structure’ and not on the input structure that
was provided. The correct way to use this tool is to use the generated ‘primitive_structure’ also for the Siesta
calculation:

structure = kpresult['primitive_structure']

Warning: As we use the initial structure cell in order to obtain the kpoints path, it is very risky to apply
this method when also a relaxation of the cell is performed! The cell might relax in a different symmetry
resulting in a wrong path for the bands. Consider to use the BandGapWorkChain if a relaxation is needed
before computing the bands.

Note: The get_explicit_kpoints_path make use of “SeeK-path”. Please cite the HPKOT paper if
you use this tool. “SeeK-path” is a external utility, not a requirement for aiida-core, therefore it is not available
by default. It can be easily installed using pip install seekpath. “SeeK-path” allows to determine
canonical unit cells and k-point information in an easy way. For more general information, refer to the SeeK-
path documentation.

The final option covers the situation when one needs to calculate the bands on a specific path (and maybe needs
to maintain a specific convention for the structure). The full list of kpoints must be passed and, very importantly,
labels must be set for the high symmetry points! This is essential for the correct set up of the “BandLines” in
Siesta. External tolls can be used to create equidistant points, whithin aiida the following (very involved) option
is available:

from aiida.orm import KpointsData

bandskpoints=KpointsData ()

from aiida.tools.data.array.kpoints.legacy import get_explicit_kpoints_path as_
—legacy_path

kpp = [('A", (0.500, 0.250, 0.750), 'B', (0.500, 0.500, 0.500), 40),

('s', (0.500, 0.500, 0.500), 'Cc', (0., 0., 0.), 40)]

tmp=legacy_path (kpp)

bandskpoints.set_kpoints (tmp[3])

bandskpoints.labels=tmp[4]

The legacy get_explicit_kpoints_path shares only the name with the function in aiida.tools,
but it is very different in scope.

2.2. Calculation plugins 11

http://dx.doi.org/10.1016/j.commatsci.2016.10.015
https://seekpath.readthedocs.io/en/latest/
https://seekpath.readthedocs.io/en/latest/

AiiDA Siesta Plugin Documentation, Release 2.0.0

The full list of cases can be explored looking at the example example_bands.py

Warning: The implementation relies on the correct description of the labels in the class KpointsData.
Refrain from improper use of bandskpoints.labels and follow the the instructions described above.
An incorrect use of the labels might result in an incorrect parsing of the bands.

If the keyword node bandskpoints is not present, no band structure is computed.
optical, class Dict, Optional

This is the dedicated input to specify Siesta’s keywords related to the calculation of optical properties. It is a
simple dictionary and it follows the same concept of the parameters and basis inputs, including the require-
ments for the use of fdf-block items. It is mandatory to specify a “%block optical-mesh”. All the other optical
inputs are optional. If not already specified by the user, the “optical-calculation” keyword will automatically set
to True by the plugin.

lua, input namespace, Optional

This input namespace allows control on the LUA interface to SIESTA. The user should remember that to enable
the LUA interface, it is suggested to compile SIESTA with £1ook and to use the £1os library (flos documen-
tation). Follow the SIESTA manual for complete instructions. Since this option also requires the definition of
the LUA_PATH, an additional step must be done before submission.

This input namespace accepts the following elements:

spec.input
spec.input
spec.input
spec.input

'lua.script', valid_type=orm.SinglefileData, required=False)
'lua.parameters', valid_type=orm.Dict, required=False)
'lua.input_files', valid_type=orm.FolderData, required=False)
'lua.retrieve_list', valid_type=orm.List, required=False)

(
(
(
(

a
a

lua.script is a Lua script implementing a specific functionality, and possibly being able to set its own operational
parameters. For example, the LBFGS geometry relaxation algorithm, or the NEB path-optimization scheme, can
be implemented in Lua. See the examples provided.

lua.parameters is a dictionary containing the operational parameters for the script. For example, it can set the
tolerance to be used in the script, or the value of the ‘spring constant’ in NEB simulations.

lua.input_files is a set of auxiliary files packaged in a FolderData object. For example, the initial set of images
for a NEB calculation.

lua.retrieve_list contains a list of the files produced by the operation of the Lua script that need to be retrieved.
They should be parsed by functionality-specific modules in client workchains.

settings, class Dict , Optional

An optional dictionary that activates non-default operations. For a list of possible values to pass, see the section
on advanced features.

parent_calc_folder, class RemoteData , Optional

Optional port used to activate the restart features.

Submitting the calculation

Once all the inputs above are set, the subsequent step consists in passing them to the calculation class and run/submit

it.

First, the Siesta calculation class is loaded:

12

Chapter 2. Contents:

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

AiiDA Siesta Plugin Documentation, Release 2.0.0

from aiida_siesta.calculations.siesta import SiestaCalculation
builder = SiestaCalculation.get_builder ()

The inputs (defined as in the previous section) are passed to the builder:

builder.code = code

builder.structure = structure

builder.parameters = parameters

builder.pseudos = pseudos_dict #or builder.ions =
builder.basis = basis

builder.kpoints = kpoints

builder.bandskpoints = bandskpoints

Finally the resources for the calculation must be set, for instance:

builder.metadata.options.resources = {'num_machines': 1}
builder.metadata.options.max_wallclock_seconds = 1800

In case of LUA calculations, the LUA_ PATH must be defined. To do so:

builder.metadata.options.environment_variables = {"LUA_PATH":"/flos_path/?.lua;/flos_
—path/?/init.lua;;; "}

where f1os_path is the path to the flos library repository (in the computer where SIESTA will run). Please note that
the explicit path must be used due to a problem of aiida (https://github.com/aiidateam/aiida-core/issues/4836). This
means that, for instance, the command export LUA_PATH="$SHOME/flos/?.lua; SHOME/flos/?/init.
lua; $SLUA_PATH; ; " suggested in the flos documentation must be substitute with explicit path of SHOME.

Optionally, label and description:

builder.metadata.label = 'My generic title'
builder.metadata.description 'My more detailed description'

To run the calculation in an interactive way:

from aiida.engine import run
results = run(builder)

Here the results variable will contain a dictionary containing all the nodes that were produced as output.

Another option is to submit it to the daemon:

from aiida.engine import submit
calc = submit (builder)

In this case, calc is the calculation node and not the results dictionary.

Note: In order to inspect the inputs created by AiiDA without actually running the calculation, we can perform a dry
run of the submission process:

builder.metadata.dry_run = True
builder.metadata.store_provenance = False

This will create the input files, that are available for inspection.

2.2. Calculation plugins 13

https://github.com/aiidateam/aiida-core/issues/4836
https://github.com/siesta-project/flos

AiiDA Siesta Plugin Documentation, Release 2.0.0

Note: The use of the builder makes the process more intuitive, but it is not mandatory. The inputs can be provided as
keywords argument when you launch the calculation, passing the calculation class as the first argument:

run (SiestaCalculation, structure=s, pseudos=pseudos, kpoints = kpoints, ...)

same syntax for the command submit.

A large set of examples covering some standard cases are in the folder aiida_siesta/examples/plugins/siesta. They can
be run with:

runaiida example_name.py {--send, ——-dont-send} code@Rcomputer

The parameter ——dont-send will activate the “dry run” option. In that case a test folder (submit_test) will be
created, containing all the files that aiida generates automatically. The parameter ——send will submit the example to
the daemon. One of the two options needs to be present to run the script. The second argument contains the name of
the code (code@computer) to use in the calculation. It must be a previously set up code, corresponding to a siesta
executable.

Outputs

There are several output nodes that can be created by the plugin, according to the calculation details. All output nodes
can be accessed with the calculation.outputs method.

¢ output_parameters Dict

A dictionary with metadata, scalar result values, a warnings list, and possibly a timing section. Units are
specified by means of an extra item with ‘_units’ appended to the key:

{

"siesta:Version": "siesta-4.0.2",

"E_Fermi": -3.24,

"E_Fermi_units": "evV",

"FreeE": -6656.2343,

"FreeE_units": "evV",

"E_KS": -6656.2343,

"E_KS_units": 'eV',

"global_time": 55.213,

"timing_decomposition”: {
"compute_DM": 33.208,
"nlefsm-1": 0.582,
"nlefsm-2": 0.045,
"post-SCEF": 2.556,
"setup_H": 16.531,
"setup_HO": 2.351,
"siesta": 55.213,
"state_init": 0.171

s

"warnings": ["INFO: Job Completed"]

}

The scalar quantities included are, currently, the Kohn-Sham (E_XS), Free (FreeE), Band (Ebs), and Fermi
(E_Fermi) energies, and the total spin (stot). These are converted to f1oat. The other quantities are or
type str.

The timing information (if present), includes the global walltime in seconds, and a decomposition by sections
of the code. Most relevant are typically the compute_DM and setup_H sections.

14

Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

The warnings list contains program messages, labeled as “INFO”, “WARNING”, or “FATAL”, read directly
from a MESSAGES file produced by Siesta, which include items from the execution of the program and also a
possible ‘out of time’ condition. This is implemented by passing to the program the wallclock time specified in
the script, and checking at each scf step for the walltime consumed. This warnings list can be examined by
the parser itself to raise an exception in the “FATAL” case.

¢ forces_and_stress ArrayData

Contains the final forces (eV/Angstrom) and stresses (Ry/Angstrom”3) in array form. To access their values:

forces_and_stress.get_array("forces")
forces_and_stress.get_array("stress")

¢ output_structure StructureData
Present only if the calculation is moving the ions. Cell and ionic positions refer to the last configuration.
¢ bands, BandsData

Present only if a band calculation is requested (signaled by the presence of a bandskpoints input node of class
KpointsData <aiida.orm.KpointsData>). It contains an array with the list of electronic energies (in eV) for
every kpoint. For spin-polarized calculations, there is an extra dimension for spin. In this class also the full list
of kpoints is stored and they are in units of //Angstrom. Therefore a direct comparison with the Siesta output
SystLabel.bands is possible only after the conversion of Angstrom to Bohr. The bands are not rescaled by the
Fermi energy. Tools for the generation of files that can be easly plot are available through bands . export.

* optical_eps2 ArrayData

Array containing the imaginary part of the dielectric function (epsilon_2) versus energy (eV). To access the
values:

optical_eps2.get_array("e_eps2")

e ions, TonData

Instances of lonData can be used as inputs of a SiestaCalculation, meaning aiida_siesta supports
the use of pre-packaged information in “.ion” files. However, most of the time, pseudos and basis specifications
are given separately for a siesta run, and the basis generation makes use of internal siesta algorithms that translate
high-level definitions (basis-sizes, split-norm, ...) into the actual basis orbitals. In these cases siesta produces
an “.ion.xml” file for each species in the structure. These files are parsed and stored into JonData instances that
can be then easily reused in subsequent calculations. From IonData instances also the explicit orbitals of the
basis can be obtained. One ions for each species is created and they will be output with the name ions_E1
where E1 is the label of the species.

¢ remote_folder, RemoteData

The working remote folder for the last calculation executed.
* retrieved, RemoteData

The local folder with the retrieved files.

No trajectories have been implemented yet.

Errors

Errors during the parsing stage are reported in the log of the calculation (accessible with the verdi process
report command). Moreover, they are stored in the output_parameters node under the key warnings.

2.2. Calculation plugins 15

AiiDA Siesta Plugin Documentation, Release 2.0.0

Restarts

A restarting capability is implemented through the optional input parent_calc_folder, RemoteData, which repre-
sents the remote scratch folder (remote_folder output) of a previous calculation.

The density-matrix file is copied from the old calculation scratch folder to the new calculation’s one.

This approach enables continuation of runs which have failed due to lack of time or insufficient convergence in the
allotted number of steps.

An informative example is example_restart.py in the folder aiida_siesta/examples/plugins/siesta.

Additional advanced features

While the input link with name parameters is used for the main Siesta options (as would be given in an fdf file),
additional settings can be specified in the settings input, also of type Dict.

Below we summarise some of the options that you can specify, and their effect.

The keys of the settings dictionary are internally converted to uppercase by the plugin.

Adding command-line options

If you want to add command-line options to the executable (particularly relevant e.g. to tune the parallelization level),
you can pass each option as a string in a list, as follows:

settings_dict = {
'cmdline': ['-optionl', '-option2'],
}
builder.settings = Dict (dict=settings_dict)

Note that very few user-level comand-line options (besides those already inserted by AiiDA for MPI operation) are
currently implemented.

Retrieving more files

If you know that your calculation is producing additional files that you want to retrieve (and preserve in the AiiDA
repository), you can add those files as a list as follows:

settings_dict = {

'additional_retrieve_list': ['aiida.EIG', 'aiida.ORB_INDX'],
}
builder.settings = Dict (dict=settings_dict)

See for example example_ldos.py in aiida_siesta/examples/plugins/siesta. The files can then be accesed through the
output retrieved and its methods get_object and get_object_content.

2.2.1.2 STM calculations
Description

A plugin for Util/plstm of the Siesta distribution, a tool to simulate STM images. The code plstm is able to process
the .LDOS file produced by Siesta. The .LDOS file contains informations on the local density of states (LDOS) in an

16 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

energy window. In the Tersoff-Hamann approximation, the LDOS can be used as a proxy for the simulation of STM
experiments. This plugin requires in input the AiiDA folder where the .LDOS folder was generated and few other
parameters (see Inputs section). It produces an array that can be plotted to obtain the STM images. The plugin is
implemented in the class STMCalculation.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

Some examples are referenced in the following list. They are located in the folder aiida_siesta/examples/plugins/stm.

code, class Code, Mandatory

A code object linked to a plstm executable. If you setup the code plstml on machine kelvin following the
aiida guidelines, then the code is selected in this way:

codename = 'plstml@kelvin'
from aiida.orm import Code
code = Code.get_from_string(codename)

mode, class St r, Mandatory

Allowed values are constant-height or constant—-current, corresponding to the two operation
modes of the STM that are supported by the pistm code. Examples for both modes are presented in the ex-
ample folder.

value, class F1oat, Mandatory

The value of height or current at which the user wants to simulate the STM. The height must be expressed in
Angstrom, the current in e/bohr**3.

ldos_folder, class RemoteData, Mandatory

The parent folder of a previous Siesta calculation in which the .LDOS file was generated. To
have more information on how to produce the .LDOS file, one can refer to the example ai-
ida_siesta/examples/plugins/siesta/example_ldos.py. Please note that the ldos_folder must be on the same
machine on which the STM analysis is performed. In other words, the input code must be installed on the
same machine where the ldos_folder resides. This is a limitation of AiiDA that can not copy between different
computers, but it is also required by plstm itself, as the .LDOS file is produced in an unformatted way.

spin_option, class St r, Optional

Input port that allows the selection of the spin options offered by plstm. It follows the same syntax of the code.
The value “q” selects a total charge analysis. The value “s” selects the total spin magnitude analyisis (only
available if the parent Siesta calculation is spin polarized). Finally, the values “x”, “y” or “z” indicate a separate
analysis of one the three spin components (only available if the parent Siesta calculation is performed with

@ 9

non-collinear options). If the port is not specified the default “q” option is activated.
settings, class St r, Optional

A port settings is available to activate some advanced features. For instance the modification of the command
line instructions and the addition of files to retreave. For more info, the corresponding section of the Standard
Siesta Plugin can be seen /ere.

2.2,

Calculation plugins 17

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions
https://aiida-core.readthedocs.io/en/latest/get_started/computers.html

AiiDA Siesta Plugin Documentation, Release 2.0.0

Submitting the calculation

The submission of any CalcJob of AiiDA always follows the same schema. Therefore, to understand how to submit a
STM calculation, it is sufficient to follow the explanation of the corresponding section of the Standard Siesta Plugin.
The only change is to import the correct plugin:

from aiida_siesta.calculations.stm import STMCalculation
builder = STMCalculation.get_builder ()

and, of course, to define the correct inputs allowed by STMCalculation (previous section).

Outputs

* stm_array ArrayData

A collection of three 2D arrays (grid_X, grid_Y, STM) holding the section or topography information. They
follow the meshgrid convention in Numpy. A heat-map plot can be generated with the get_stm_image.py script
in the repository of examples.

¢ output_parameters Dict

At this point, it constains only the parser information and the name of the retrieved file where the STM info
were stored.

Errors

Errors during the parsing stage are reported in the log of the calculation (accessible with the verdi process
report command).

2.3 Utilities

2.3.1 Utils

This section collects the documentation on tools that have been implemented in the package, but can not be classified
as traditional AiiDA objects. The scope of these tools is a further improvement of the automatization of siesta calcula-
tions. Some of them are more for development purposes (FDFDict), others are for the benefit of any user (the protocol
system).

2.3.1.1 The protocols system

Description

In order to submit SiestaCalculations, the user needs to manually select all the inputs, being careful to pass the correct
specifications to perform the calculation (as explained in the corresponding section). The package aiida_siesta
provides also a set of pre-selected inputs to run a SiestaCalculations, and the WorkChains distributed in the package,
supporting the tasks of the relaxation of a structure and the calculations of bands. In other words, the user can obtain
abuilder of the SiestaCalculation that is ready to be submitted. This builder, in fact, is pre-filled with inputs
selected according to the structure under investigation and very few options specified by the user. The lengthy inputs
selection is substitute by:

18 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

inp_gen = SiestaCalculation.inputs_generator ()
builder = inp_gen.get_filled_builder (structure, calc_engines, protocol)

The list of options to obtain the builder is presented /ere, however the main feature is the use of protocols. A protocol
groups operational parameters for a Siesta calculation and it is meant to offer a set of inputs with the desired balance
of accuracy and efficiency. At the moment only one protocol is shipped in the package, it is called standard_psml.
More on it is presented in the next to next subsection. It is important to note that the implemented protocols are not,
for the moment, input parameters that are guaranteed to perform in any situation. They are only based on reasonable
assumptions and few tests. However, in the package it is also implemented a system that allows users to create their
own protocols, as clarified /ere. Finally, it must be remembered that the builder produced according to a protocol
and few other options is fully modifiable before submission, leaving full flexibility to the user. We expect in the future
to have more and more “know how” and improve the reliability and richness of the available protocols.

We focus here on the description of the use of protocols for the SiestaCalculation, but the same system is available
for all the WorkChains distributed in this package. A small paragraph in the documentation of each WorkChain will
explain the details of the usage of protocols for that particular WorkChain.

Supported Siesta versions

The protocol system, at the moment, requires a version of siesta with support for psml pseudopotential. At least the
MaX-1.0 release of Siesta, which can be found in the development platform (https://gitlab.com/siesta-project/siesta),
meets this requirement. For more up to date info on compatibility, please check the wiki.

Available protocols

With the word protocol we mean a series of suggested inputs for AiiDA CalJobs/WorkChains that allow users to
more easily automatize their workflows. These inputs reflects a certain set of operational parameters for a Siesta
calculation. The choice of the inputs of a DFT simulation should be carefully tested for any new system. Therefore the
use of protocols, in place of a careful and tested choice of inputs, it is always somehow limiting. It can be, however,
considered a good starting point. This is the very beginning of the development and, for the moment, only one very
basic protocol is implemented. A description of its variables is now reported. Each protocol contain a section with
global variables and an aromic_heuristics dictionary, a dictionary intended to encode the peculiarities of particular
elements.

e standard_psml

The full list of variables for this protocol are collected in the protocol_registry.yaml file, located in
aiida_siesta/utils.

— global variables

Pseudopotential ONCVPSPv0.4 (norm-conserving) of Pseudo Dojo in psml format, scalar relativistic, PBE
and with standard accuracy (download available from the PseudoDojo web site). Basis set apply globally,
with size DZP and energy-shift of 50 meV. The mesh—cutoff is 200 Ry, electronic-temp
25 meV, and a kpoint mesh with distance 0.1 are implemented. Concerning the trashold for conver-
gence, we implement 1.e-4 tolerance for the density matrix, 0.04 ev/ang for forces and 0.1 GPa for
stress. Few more global variables are related to mixing options: scf-mixer-history is set to 5,
and scf-mixer-weight is 0.1. As only the Max-1.0 version of Siesta is supported, the default mixer
is Pulay and the quantity mixed is the Hamiltonian.

— atomic_heuristics

The element “Ag” requires a bigger mesh-cutoff because mesh-cutoff = 200 Ry was leading
to a “Failure to converge standard eigenproblem” error for the “Ag” elemental crystal. Custom basis for
“Ca”,’Sr”,”Ba” are necessary because the automatic generation results in a too-large radius for the “s”

2.3. Utilities 19

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions
http://www.pseudo-dojo.org/

AiiDA Siesta Plugin Documentation, Release 2.0.0

orbitals. The “Hg” custom basis introduces an increment of all radii of 5% compared to the automatic
generated orbitals and adds a Z orbital for the “p” channel, while removing polarization. The elements
“Li”, “Be”, “Mg”, Na”, “Fe”, “Mn”, “Sb” require a bigger mesh-cutoff because mesh-cutoff =

200 Ry resulted in a discontinuous equation of state.

This choice of parameters have been tested on crystal elements up to the element “Rn” and compared with
the reference equation of state of the DeltaTest project, resulting on an average delta value of 7.1 meV. The
parameters of this protocol for noble gasses do not result in an a minimum of the equation of state. Because
Van der Waals forces are not included in the calculation, the result is not surprising. We warn users to use with
care this protocol for noble gasses. It is important to stress that the present protocol has not been conceived
to produce good results for the Delta test; the basis sets are mostly automatic and the choice of mesh-cutoff /
kpoints-mesh is farely loose. The average value for the delta (7.1 meV) is just an indication that the parameters’
choice gives reasonable results for elemental crystals. We are working on a more accurate (and expensive)
protocol that will provide much better values of delta. New tests and checks on the standard_psml protocol will
be added in the aiida-siesta wiki.

The management of the pseudos is, at the moment, very fragile. It imposes that the user loads a pseudo_family
with the correct name that is hard-coded for the each protocol. This name is ‘nc-sr-04_pbe_standard_psml’ for the
standard_psml protocol. Therefore a user, before using protocol, needs to download the correct pseudos and load them
(see next section) with the correct name. —This last part will change soon, replaced with a proper setup-profile script

How to use protocols

In this section we explain how to obtain a pre-filled builder according to a protocol and an input structure, that is ready
to be submitted (or modified and then submitted).

First of all, the scalar relativistic “standard” pseudo set from PseudoDojo must be installed as aiida family pseudo
family:

aiida-pseudo install pseudo-dojo -v 0.4 -x PBE -r SR -p standard —-f psml

Once this first step is done, the pre-filled builder can be accessed through the method inputs_generator of the
SiestaCalculation (and of any other workchain). For example:

from aiida_siesta.calculations.siesta import SiestaCalculation

inp_gen = SiestaCalculation.inputs_generator ()

builder = inp_gen.get_filled_builder (structure, calc_engines, protocol)
#here user can modify builder befor submission.

submit (builder)

The arguments of get_filled_builder of the input generator are explained here:
* structure, class St ructureData, Mandatory
A structure. See the plugin documentation for more details.
* calc_engine, python dict, Mandatory

A dictionary containing the specifications of the code to run and the computational resources. An example:

calc_engines = {
'siesta': {
'code': codename,
'options': {
'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
'max_wallclock_seconds': 360,

(continues on next page)

20 Chapter 2. Contents:

https://molmod.ugent.be/deltacodesdft
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Protocols-validations
http://www.pseudo-dojo.org/

AiiDA Siesta Plugin Documentation, Release 2.0.0

(continued from previous page)

'queue_name': 'DevQ',
'withmpi': True,
'account': "tcphyll3c"

The dictionary must present siesta as upper level key of the dictionary. This might seem unnecessary, but
will become fundamental for the use of protocols in more complicated WorkChain, involving not only the siesta
plugin, but also, for instance, the stm plugin. The structure of calc_engines for each WorkChain of the
package will be specified in the WorkChain documentation.

e protocol, python st r, Mandatory
The protocol name, selected among the available ones, as explained in the previous section.
* bands_path_generator, python str, Optional

The presence of this parameter triggers the calculation of bands. Two are the available value to pass as
bands_path_generator: “seekpath” or “legacy”. They set the way the path in k-space is produced. This path
is used to display the bands. While “seekpath” modify the structure running the calculation on an equivalent
“conventional” cell, “legacy” doesn’t and preserves the input structure. However the “legacy” method is known
to have bugs for certain structure cells.

* relaxation_type, python str, Optional

The presence of this parameter triggers the possibility to relax the structure. The specifications of the relax-

ation_type are “atoms_only”, “variable_cell” or “constant_volume”, that should be self expalnatory. For the
moment only the CG relaxation algorithm is implemented (in the future more will be added).

* spin, python st r, Optional

The presence of this parameter triggers the spin options. The specifications of the spin are the one of mod-
ern version of Siesta, they are “polarized”, “non-collinear” and “spin-orbit”. If no spin option is defined, the
calculation will not be spin polarized.

An example of the use is in aiida_siesta/examples/plugins/siesta/example_protocol.py

The method get_filled_builder is definitely the most important tool offered by the inputs_generator,
however through the inputs_generator other methods can be accessed to explore the various options of the
protocol system. For instance, there is a method listing all the available protocols, the available relaxation types and
SO on.

How to create my protocols

The protocol system allows also to create customized protocol. To this end, a file similar to ai-
ida_siesta/utils/protocol_registry.yaml must be created, listing the custom protocols. Then the path of this file must be
added to the environment variable AIIDA_SIESTA_PROTOCOLS. This will be sufficient to let aiida-siesta recognize
the protocols. The file containing the customized protocols must have the same structure of protocol_registry.yaml.
An example:

my_protocol:
description: 'My description'
parameters:
xc—-functional: "GGA"
xc—authors: "PBE"
mesh-cutoff: '200 Ry'

(continues on next page)

2.3. Utilities 21

AiiDA Siesta Plugin Documentation, Release 2.0.0

(continued from previous page)

spin_additions:

write-mulliken-pop: 1
relax_additions:

scf-dm-tolerance: 1.e-4

md-max—-force-tol: '0.04 eV/ang'

md-max-stress-tol: '0.1 GPa'
basis:

pao-energy-shift: '50 meV'

pao-basis-size: 'DZP'
pseudo_family: 'nc-sr-04_pbe_standard_psml'
kpoints:

distance: 0.1

offset: [0., 0., 0.]
atomic_heuristics:

Li:
parameters:
mesh-cutoff: '250 Ry'
basis:
polarization: 'non-perturbative'

pao-block: "Li 3 \n ... "
split-tail-norm: True

The protocol name should be the outer entry of the indentation. For each protocol, some keyword are mandatory. They
are description, parameters, basis and pseudo_family. The pseudo_family must contain the name of a family (Psml or
Psf family) that has been already uploaded in the database. The number of elements covered by your pseudo family
will limit the materials you can simulate with your protocol. The parameters and basis entries are transformed into
dictionaries and passed to AiiDA after possible modifications due to atom heuristics or spin/relax additions. For this
reason, the syntax (lower case and ‘-’ between words) must be respected in full.

Two optional keywords are relax_additions and spin_additions. This two entries are not meant to host the siesta key-
words that activate the relaxation or spin options, but possible additions/modifications to the parameters entry, to apply
in case of relaxation or spin. When the use of protocols is called and the relax/spin options are requested (see here),
the system will automatically take care of introducing the correct siesta keyword (MD.TypeOfRun, MD.VariableCell,
spin etc.) that are indispensable to run the task. However, it might happen that a user desires a more loose scf-dm-
tolerance for the task of the relaxation or a different scf-mixer-weight when the spin is active. The relax_additions
and spin_additions keywords have been created exactly for this purpose. Please be carefull that (except for the mesh-
cutoff) if a keyword in spin_additions or relax_additions is already present in parameters, its value in parameters will
overriden. In other words, values in spin_additions or relax_additions have priority compared to the one in parame-
ters. Moreover relax_additions has priority respect to spin_additions. For the mesh-cutoff the situation is different,
because the biggest value will always be considered, no metter where it is specified. Another optional entry is kpoints,
where a distance and an offset only can be specified. The system will take care to create a uniform mesh for the
structure under investigation with a density that correspond to a distance (in 1/Angstrom) between adjacent kpoints
equal to dinstance.

The final allowed (optional) keyword is atomic_heuristics. In it, two only sub-keys are allowed: parameters and basis.
In parameters, only a ‘mesh-cutoff’ can be specified. This mesh-cutoff applies globally and only if it is the biggest
one among the all mesh-cutoff that apply. This system is meant to signal elements that requires a bigger ‘mesh-cutoff’
than normal. For basis, we allow ‘split-tail-norm’, ‘polarization’, ‘size’ and ‘pao-block’. The ‘size’ and’ polarization’
introduce a block reporting the change of pao size and polarization schema only for the element under definition. The
‘pao-block’ allows to specify an explicit “block Pao-basis” for the element. The ‘split-tail-norm’ instead activate in
siesta the key ‘pao-split-tail-norm’, that applies globally.

We conclude this subsection with few more notes to keep in mind. First, the units mut be specified for each siesta
keyword that require units and they must be consisten throughout the protocol. This means that it is not possible
to define ‘mesh-cutoff’ in Ry in parameters, but in eV in the atomic_heuristics. Second, it is up to the creator to

22 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

remember to introcude the correct ‘xc-functional’ and ‘xc-authors’ keywords in the protocol that matches the same
exchange-correlation functional of the pseudos in the pseudo family. This also means that we do not support pseudos
presenting different exchange-correlation functionals in the same family. Third, we impose a description for each
protocol because in the description the creator must underline the limitations of the protocol. For instance, the case
when a certain protocol do not support spin-orbit as the pseudos are not relativistics. The schema we presented here is
certanly not perfect and it is far to cover all the possible situations, however it must be remembered that any user has
always the chance to modify the inputs (builder) before submission.

2.3.1.2 FDF dictionary

Description

The FDFDict class represents data from a .fdf-file (the standard input of the siesta code). It behaves like a normal
python dictionary, but with translation rules that follow the standards of the Flexible Data Format (FDF). The FDF
format was developed inside the siesta package in order to facilitate the creation of the input file of siesta. Among
other features, it substitute strings in favour of default values. In particular it drops dashes/dots/colons and imposes
lowercase. The FDFDict class accepts in input a python dictionary and applies the same rules to the “keys” of the
dictionary. An example:

from aiida_siesta.calculations.tkdict import FDFDict
inp_dict = {"ThisKey": 3,"a-no-ther": 4,"t.h.i.r.d" : 5}
f = FDFDict (inp_dict)

print (f.keys())

returns dict_keys (['thiskey', 'another', 'third']).

When two keys in the same dictionary will become the same string after translation, the last definition will remain:

from aiida siesta.calculations.tkdict import FDFDict
inp_dict = {"w":3,"e":4,"w—-":5}

f = FDFDict (inp_dict)

print (f.get_dict())

returns { 'w': 5 'e': 4},

The method get_dict returns the translated dictionary, but the class keeps record also of the last unstraslated key
for each key. This can be seen just printing £. The method get_untranslated_dict returns the dictionary with
the last unstranslated keys as keys. Therefore in our example, the get_untranslated_dict returns {'w——"':
5, 'e': 4},

Getter and setter are implemented to get and set the value automatically for each equivalent key. f["w"],
f ["w——="] will return the same value. The call £ ["w——-="] = 3 will reset the value of key "w", also changing
the “last untranslated key” to "w——-".

Many more methods are available in the FDFDict class. They can be explored from the source code

(aiida_siesta.calculations.tkdict). It is a useful tool for the development of new CalcJobs and
WorkChains.

2.3.1.3 PAO manager

EXPERIMENTAL FEATURE!

2.3. Utilities 23

AiiDA Siesta Plugin Documentation, Release 2.0.0

Description

Class to help modifications of PAO basis block. Also translates orbitals info contained in ion files into a PAO block.
For the moment can only treat one single site at the time and can be initialized only from an IonData instance:

ion=load_node (pk) # pk of an IonData instance
pao_manager = ion.get_pao_modifier ()

It offers several methods to manipulate the basis specifications, for instance adding and removing orbitals (also po-
larized), increase or decrease all the radii of a percentage, manually modify single radii of orbitals. It the returns a
string that can be directly insered into the basis input of a SiestaCalculation (or workchains of the package) under the
9Yopao-basis block key:

’pao_manager.get_pao_block()

2.4 Workflows

2.4.1 Workflows

In this section we document the AiiDA WorkChains distributed in aiida-siesta. They are tools that automatize
some simple tasks that are commonly faced during the the research process. The WorkChains are constructed using
exclusively the calculations plugin described in the section “Calculations”.

2.4.1.1 Base workflow

Description

The SIESTA program is able to perform, in a single run, the computation of the electronic structure, the optional
relaxation of the input structure, and a final analysis step in which a variety of magnitudes can be computed: band
structures, projected densities of states, etc. The operations to be carried out are specified in a very flexible input
format. Accordingly, the SiestaBaseWorkChain has been designed to be able to run the most general SIESTA cal-
culation, with support for most of the available options (limited only by corresponding support in the parser plugin).
The option specifications of the SiestaBaseWorkChain follow the conventions already presented in the Siesta plugin.
Therefore, for instance, the addition of the input keyword bandskpoints triggers the calculation of the band structure
of a system, while it is sufficient to add the SIESTA MD keywords to the parameters input in order to perforem the
relaxation of a structure. In contarst to the SiestaCalculation plugin, however, the workchain is able to automatically
restart a calculation in case of failure (lack of electronic-structure or geometry relaxation convergence, termination due
to walltime restrictions, etc). Therefore, the SiestaBaseWorkChain is the suggested tool to run Siesta calculations in
the AiiDA framework. In fact, it retains the same level of flexibility of the most general Siesta calculation, but it adds
robusness thanks to its ability to automatically respond to erros. Examples on the use of the SiestaBaseWorkChain
are presented in the folder /aiida_siesta/examples/workflows.

Supported Siesta versions

Atleast4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

24 Chapter 2. Contents:

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

Inputs

All the siesta plugin inputs are also inputs of the SiestaBaseWorkChain. Therefore, detailed information on them
can be found /ere. The only difference is regarding the way the computational resources are passed. The siesta plugin
makes use of metadada.options for this task, here, instead, we have a dedicated input node.

* options, class Dict, Mandatory

Execution options for the siesta calculation. In this dictionary the computational resources and scheduler speci-
fications (queue, account, etc ..) must be specified. An example is:

options = Dict(

dict={
'max_wallclock_seconds': 360,
'withmpi': True,
'account': 'tcphyll3c',
'queue_name': 'DevQ',
'resources': {'num_machines': 1, 'num_mpiprocs_per_machine': 2},
}

)

The resources and max_wallclock_seconds are required by AiiDA, the rest of the options depend on the sched-
uler of the machine one is submitting to.

The SiestaBaseWorkChain also has some additional inputs that allow to control additional features.
¢ pseudo_family, class St r, Optional

String representing the name of a pseudopotential family stored in the database. Pseudofamilies can be in-
stalled in the database via the aiida-pseudo install family CLI interface. As already specified in
the description of the pseudos input /ere.

¢ clean_workdir, class Bool, Optional
If true, work directories of all called calculations will be cleaned out. Default is false.
* max_iterations, class Int, Optional

The maximum number of iterations allowed in the restart cycle for calculations. The SiestaBaseWorkChain
tries to deal with some common siesta errors (see here) and restart the calculation with appropriate modifications.
The integer max_iterations is the maximum number of times the restart is performed no matter what error is
recorded. The input is optional, if not specified, the default In#(5) is used.

Relaxation and bands

As already mentioned in the introduction, in addition to simple scf calculations, the SiestaBaseWorkChain can be
used to perform the relaxation of a structure and the electronic bands calculations. For the electronic bands, however,
we suggest the use of the BandgapWorkChain distributed in this package, because it adds the feature to automati-
cally calculate the band gap. Concerning the relaxation of a structure, the SiestaBaseWorkChain simply exploits the
internal relaxation implemented in Siesta in order to complete the task. The full set of a Siesta relaxation options can
be accessed just adding the corresponding keyword and value in the parameters input dictionary. The only additional
feature that the SiestaBaseWorkChain adds is that it requires to reach the target forces and stress to consider com-
pleted the task. If this does not happen in a single Siesta run, the workchain restarts automatically the relaxation. The
maximum number of restarts is specified with the keyword max_iterations, as explained in the previous subsection.

2.4. Workflows 25

AiiDA Siesta Plugin Documentation, Release 2.0.0

Submitting the WorkChain

WorkChains are submitted in AiiDA exacly like any other calculation. Therefore:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
from aiida.engine import
builder = SiestaBaseWorkChain.get_builder ()
builder.options = options
. All the inputs here
submit (builder) #or run

There is no need to set the computational resources with the metadata as they are already defined in the input options,
however builder.metadata.label and builder.metadata.description could be used to label and
describe the WorkChain. Again, the use of the builder is not mandatory, the inputs can be passed as arguments of
sumbit/run as explained in the siesta plugin section.

Outputs

The outputs of the SiestaBaseWorkChain mirror exactly the one of the siesta plugin. Therefore all the information
can be obtained in the corresponding section.

Error handling

We list here the errors that are handled by the SiestaBaseWorkChain and the corresponding action taken. The error
are actually detected by the siesta parser, in the WorkChain, the handling is performed.

* SCF_NOT_CONV

When the convergence of the self-consistent cycle is not reached inmax—-scf-iterations orin the allocated
max_walltime, siesta raises the SCF_NOT_CONY error. The SiestaBaseWorkChain is able to detect this
error and restart the calculation with no modifications on the input parameters.

* GEOM_NOT_CONV

When the convergence of the geometry (during a relaxation) is not reached in the allocated max_walltime,
siesta raises the GEOM_NOT_CONY error. The SiestaBaseWorkChain is able to detect this error and restart
the calculation with no modifications on the input parameters.

e SPLIT_NORM

The SiestaBaseWorkChain deals with problems connected to the basis set creation. If a “too small split-norm”
error is detected, the WorkChains reacts in two ways. If a global split-norm was defined in input through
pao—-split—-norm, its value is reset to the minimum acceptable. If no global split-norm was defined the
option pao—-split-tail-norm = True is set.

Two more errors are detected by the WorkChain, but not handled at the moment, only a specific error code is returned
as output without attempting a restart.

* BASIS_POLARIZ

If an error on the polarization of one orbital is detected, the error code 403 is returned. The solution to this
problem is to set the “non-perturbative” polarization scheme for the element that presents an error, however
this possibility is available only in recent versions of AiiDA, making inconvenient to treat automatically the
resolution of this error.

* ERROR_BANDS

26 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

If a calculation of the electronic bands is requested, but an error in the parsing of the bands file is detected, the
error code 404 is returned. In this case, the WorkChain will anyway return all the other outputs because the
checks on the bands file are always performed at the very end of the calculation.

The SiestaBase WorkChain also inherits the error codes of the BaseRestartWorkChain of the aiida-core distribution.
For instance, if an unexpected error is raised twice, the workchain finishes with exit code 402, if the maximum number
of iterations is reached, error 401 is returned. More in the section BaseRestartWorkChain of the aiida-core package.

Protocol system

The protocol system is available for this WorkChain. The SiestaBaseWorkChain.inputs_generator ()
makes available all the methods explained in the protocols documentation. For example:

from aiida_siesta.workflows.base import SiestaBaseWorkChain

inp_gen = SiestaBaseWorkChain.inputs_generator ()

builder = inp_gen.get_filled_builder (structure, calc_engines, protocol)
#here user can modify builder befor submission.

submit (builder)

is sufficient to submit a SiestaBaseWorkChain on st ructure following the specifications of protocols and
computational resources collected in calc_engines. The structure of calc_engines is the same as for the
SiestaCalculation input generator (again see protocols documentation).

2.4.1.2 Bandgap workflow

Description

The BandgapWorkChain is an extension of the SietaBaseWorkChain that introduces some logic to automatically
obtain the bands and applyes a simple post-process with the scope to return the metallic or insulating nature of the
material and, possibly, the band gap.

To calculate the gap, this workchain makes use of a tool distributed in aiida-core, the method £ind_lbandgap hosted
inaiida.orm.nodes.data.array.bands.

The optional automatic generation of the kpoints path for the bands is done using SeeK-path.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

All the SiestaBaseWorkChain inputs are as well inputs of the BangapWorkChain, therefore the system and DFT
specifications (structure, parameters, etc.) are inputted in the WorkChain using the same syntax explained in the
SiestaBaseWorkChain documentation. There is however the addition of an importan feature. If bandskpoints are
not set in inputs, the BandgapWorkChain will anyway calculate the bands following these rules:

« If a single-point calculation is requested, the kpoints path for bands is set automatically using SeeK-path. Please
note that this choice might change the structure, as explained in the SeeK-path documentation.

2.4. Workflows 27

https://aiida.readthedocs.io/projects/aiida-core/en/latest/reference/apidoc/aiida.engine.processes.html?highlight=baserestart#aiida.engine.processes.BaseRestartWorkChain
https://seekpath.readthedocs.io/en/latest/
https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions
https://seekpath.readthedocs.io/en/latest/

AiiDA Siesta Plugin Documentation, Release 2.0.0

« If a relaxation was asked, first a siesta calculation without bands is performed to take care of the relaxation, then
a separate single-point calculation is set up and the bands are calculated for a symmetry path in k-space decided
by SeeK-path using the output structure of the relaxation. This overcomes the problem of the compatibility
between bands and variable-cell relaxations. In fact, the final cell obtained from a relaxation, can not be known
in advance, and to set the kpoint path without knowing the cell is generally a poor choice. Again note that SeeK-
path might change the structure. In this second case, only the structure of the final single-point calculation will
be changed. The changed structure is returned as output_structure port of the workchain.

If the bandskpoints is set by the user in inputs, no action is taken and the behaviour follow what explained for the
SiestaBaseWorkChain documentation.

An additional input is present:
 seekpath_dict class Dict, Optional

Dictionary hosting the parametrs to pass to the get _explicit_kpoints_path method of SeeK-path. The
default sets { 'reference_distance': 0.02, 'symprec': 0.0001}, meaning target distance
between neighboring k-points of 0.02 1/ang and symmetry precision parameter of 0.0001. Full list of the possi-
ble options and their explanation can be found here.

Outputs

e All the outputs of SiestaBaseWorkChain are also outputs of this WorkChain, they can be explored in the
relative section of the SiestaBaseWorkChain.

¢ band_gap_info Dict

A dictionary containing a bool (is_insulator) set to True if the material has a band gap, to False otherwise.
Moreover the dictionary contains the value of the gap in eV.

Protocol system

The protocol system is available for this WorkChain. The BandgapWorkChain.inputs_generator () makes
available all the methods explained in the protocols documentation. The bands options are still valid and they will
set a bandskpoints input to the workchain. To avail of the automatic generation of bands path, do not pass any
bands_path_generatortoget_filled_builder.

2.4.1.3 Equation Of State workflow

Description

The EqOfStateFixedCellShape WorkChain is a tool for the calculation of the equation of state of a solid. Density
Functional Theory (DFT) calculations with the SIESTA code are performed at 7 equidistant volumes around a starting
volume in order to obtain the energy (E) versus volume (V) data. The starting volume is an optional input of the
WorkChain, called volume_per_atom. If the latter is not specified, the input structure volume is use as starting
volume. The WorchChain ensure robustness in the convergence of each SIESTA calculation thanks to the fact that
each DFT run is submitted through the SiestaBaseWorkChain, that automatically manages some common failures
(lack of electronic-structure or geometry relaxation convergence, termination due to walltime restrictions, etc). All the
SiestaBaseWorkChain inputs are as well inputs of the EqOfStateFixedCellShape, therefore the system and DFT
specifications (structure, parameters, etc.) are inputted in the WorkChain using the same syntax explained in the
SiestaBaseWorkChain documentation. As the name of the class suggest, the EqOfStateFixedCellShape is designed
to obtain the E(V) curve under the restriction of fixed cell shape. This means that no algorithm for stress minimization
is implemented in the WorkChain. However the option relaxation MD.ConstantVolume (see SIESTA manual)
might be added into the parameters dictionary to let SIESTA to relax the structure at fixed volume. There is no point,

28 Chapter 2. Contents:

https://seekpath.readthedocs.io/en/latest/module_guide/index.html#seekpath.getpaths.get_explicit_k_path

AiiDA Siesta Plugin Documentation, Release 2.0.0

for obvious reasons, to run this WorkChain with the relaxation option MD.VariableCell. This WorkChain also
tries to perform a Birch_Murnaghan fit on the calculated E(V) data, following the DeltaProject implementation. If the
fit fails, a warning is stored in the report of the WorkChain (accessible through verdi process report <PK>),
but the E(V) data for the 7 volumes are always returned, leading to a succesfull termination of the process.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

 All the inputs of the SiestaBaseWorkChain, as explained Zere.
¢ volume_per_atom, class Float, Optional

A decimal number corresponding to the volume per atom around which to perform the equation of state.
* batch_size, class Int, Optional

Number of volumes to run at the same time. By default, it is set to one, therefore one volume at the time is
submitted

Outputs

e results_dict Dict

A dictionary containing a key eos_data that collects the computed E(V) values and relative units of measure.
If the Birch-Murnaghan fit is succesfull, also the key fit_res will be present in this disctionary. It reports the
following values extracted from the fit: the equilibrium volume (Vo, in Angstom”3/atom), the minimum energy
(Eo, in eV/atom), the Bulk Modulus (Bo, in ev/Angstrom”3) and its derivative respect to the presure B1.

¢ equilibrium_structure St ructureData

Present only if the Birch-Murnaghan fit is succesfull, it is the AiiDA structure at the equilibrium volume Vo.

Protocol system

The protocol system is available for this WorkChain. The EqOfStateFixedCellShape.
inputs_generator () makes available all the methods explained in the protocols documentation, the only
difference is that the relaxation type “variable-cell” is not available.

2.4.1.4 STM workflow

Description

The SiestaSTM Workchain workflow consists in 3 steps:

* Performing of a siesta calculation on an input structure (including relaxation if needed) through the SiestaBase-
WorkChain.

* Performing of a further siesta calculation aimed to produce a .LDOS file.

2.4. Workflows 29

https://github.com/molmod/DeltaCodesDFT/blob/master/eosfit.py
https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

* A call to the plstm code to post process the .LDOS file and create simulated STM images. The call is made via
the STM Calculation plugin, which is also included in the aiida_siesta distribution.

The .LDOS file contains informations on the local density of states (LDOS) in an energy window. The LDOS can
be seen as a “partial charge density” to which only those wavefunctions with eigenvalues in a given energy interval
contribute. In the Tersoff-Hamann approximation, the LDOS can be used as a proxy for the simulation of STM
experiments. The 3D LDOS file is then processed by the specialized program plstm to produce a 2D section in
“constant-height” or “constant-current” mode, optionally projected on spin components (see the header/manual for
plstm, and note that non-collinear and spin-orbit modes are supported). The “constant-height” mode corresponds to
the creation of a plot of the LDOS in a 2D section at a given height in the unit cell (simulating the height of a STM
tip). The “constant-current” mode simulates the topography map by recording the z coordinates with a given value of
the LDOS.

The inputs to the STM workchain include all the inputs of the SiestaBaseWorkChain to give full flexibility on the
choice of the siesta calculation parameters. The energy window for the LDOS is specified respect to the Fermi energy.
In fact, a range of energies around the Fermi Level (or regions near to the HOMO and/or LUMO) are the meaninful
energies for the STM images production. The tip height (“constant-height” mode) or the LDOS iso-value (“constant-
current” mode) must be specified by the user in input. The workchain returns an AiiDA ArrayData object whose
contents can be displayed by standard tools within AiiDA and the wider Python ecosystem.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

¢ All the inputs of the SiestaBaseWorkChain, as explained /ere.
* stm_code, class Code, Mandatory

A code associated to the STM (plstm) plugin (siesta.stm). See plugin documantation for more details.
* stm_mode, class St r, Mandatory

Allowed values are constant-height or constant-current, corresponding to the two operation
modes of the STM that are supported by the plstm code.

* stm_value, class F1oat, Mandatory

The value of height or current at which the user wants to simulate the STM. This value represents the tip height
in “constant-height” mode or the LDOS iso-value in “constant-current” mode. The height must be expressed in
Angstrom, the current in e/bohr**3.

e emin, class Float, Mandatory

The lower limit of the energy window for which the LDOS is to be computed (in eV and respect to the Fermi
level).

* emax, class Float, Mandatory

The upper limit of the energy window for which the LDOS is to be computed (in eV and respect to the Fermi
level).

stm_spin, class St r, Mandatory

Allowed values are none, collinear or non-collinear. Please note that this keyword only influences
the STM post process! It does not change the parameters of the siesta calculation, that must be specified in
the parameters input port. In fact, this keyword will be automatically reset if a stm_spin option incompatible

30 Chapter 2. Contents:

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

with the parent siesta spin option is chosen. A warning will be issued in case this happens. This keyword also
influences the structure of the output port stm_array. If fact, if the non-collinear value is chosen, the
workflow automatically performs the STM analysis in the three spin components and for the total charge option,
resulting in a richer stm_array (see description in the Outputs section).

e stm_options, class Dict, Optional

This dictionary can be used to specify the computational resources to be used for the STM calculation (the plstm
code). It is optional because, if not specified, the same resources of the siesta calculations are used, except that
the parallel options are stripped off. In other words, by default, the plstm code runs on a single processor.

Outputs

e stm_array ArrayData

In case the stm_spin is none or collinear this output port is a collection of three 2D arrays (grid_X,
grid_Y, STM) holding the section or topography information. Exactly like the output of the STM plugin. In
case the stm_spin is non-collinear, this output port is a collection of six 2D arrays (grid_X, grid_Y,
STM_gq, STM_sx, STM_sy, STM_sz) holding the section or topography information for the total charge STM
analysis and the three spin components. Both cases follow the meshgrid convention in Numpy. A contour plot
can be generated with the get_stm_image.py script in the repository of examples. The ger_stm_image.py script
automatically detects how many arrays are in stm_array, therefore it is completely general.

¢ output_structure St ructureData

Present only if the siesta calculation is moving the ions. Cell and ionic positions refer to the last configuration,
on which the STM analysis is performed.

Protocol system

The protocol system is available for this WorkChain. The SiestaSTMWorkchain.inputs_generator ()
makes available all the methods explained in the profocols documentation, but get_filled_builder now re-
quires in inputs also the stm_mode (a python str <str>, accepted values are “constant-height”” and “constant-current™)
and stm_value (a python float <float> indicating the value of height in Ang or current in e/bohr**3). Moreover
in the calc_engines dictionary, also indications on the resources for the stm calculation must specified, following
the syntax of this example:

calc_engines = {
'siesta': {
'code': codename,
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 3600 }
}I
'stm': {
'code': stmcodename,
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 1360 }

}

The STM spin mode is chosen accordingly to the spin input passed to get_filled_builder, setting “collinear”
stm_spin in case of polarized calculation, “non-collinear” in case of “spin-orbit” or “non-collinear” calculations and no
spin in case of an unpolarized calculation. Therefore, if, for instance, the user wants to post-process a spin calculation
with “no-spin” STM mode, he/she needs to manually modify the builder before submission. Also the emin and emax
inputs of SiestaSTMWorkchain are internally chosen by the inputs generator: they select an energy window of 6

2.4. Workflows 31

AiiDA Siesta Plugin Documentation, Release 2.0.0

eV below the Fermi energy. If the choice doesn’t suit the purpose, the user can manually modify the builder before
submission.

2.4.1.5 lterator workflow

Description

The Siestalterator is a tool to facilitate the submission of several Siesta Calculations in an automatic way. It allows
the iteration over Siesta parameters and, more in general, over inputs of a SiestaBaseWorkChain. An example on the
use of the SiestaConverger is /aiida_siesta/examples/workflows/example_iterate.py.

Supported Siesta versions

Atleast4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

All the SiestaBaseWorkChain inputs are as well inputs of the Siestalterator, therefore the system and DFT specifi-
cations (structure, parameters, etc.) are inputted in the WorkChain using the same syntax explained in the SiestaBase-
WorkChain documentation. The additional inputs are:

* iterate_over, class Dict, Mandatory

A dictionary where each key is the name of a parameter we want to iterate over (st r) and each valueisa 1ist
with all the values to iterate over for the corresponding key. Accepted keys are:

— Name of the input ports of the SiestaBaseWorkChain. Meaning all the names listed /ere. In this case, the
corresponding values list must contains the list of Data nodes (stored or unstored) accepted by the key.
Examples are:

codel = load_code("SiestaHerellocalhost")
code?2 = load_code("SiestaTherel@remotemachine™)
iterate_over = {"code" : [codel,code2]}

structl = StructureData (ase=ase_struct_1)
struct?2 = StructureData (ase=ase_struct_2)
iterate_over = {"structure" : [structl,struct2]}

— Name of accepted Siesta input keywords (for instance mesh-cutoff, pao—energy-shift,etc...).
In this case, the corresponding values list must contains the list of values directly, meaning str, float,
int or bool python types. Examples are:

iterate_over = {"spin" : ["polarized", "spin-orbit"]}

Warning: In order to guarantee full flexibility, no check on the Siesta parameters is performed. If
you pass as key something not recognized by Siesta, the Siestalterator will include it in the parameters
input and run the calculation with no warning issued. Because Siesta will not understand the keyword,
it will ignore it, resulting in a series of identical calculations.

The iterate_over is a dictionary because it is possible to iterate over several keywords at the same time. Some-
thing of this kind:

32 Chapter 2. Contents:

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

structl = StructureData (ase=ase_struct_1)
struct?2 = StructureData (ase=ase_struct_2)
iterate_over = {"structure" : [structl,struct2], "spin" : ["polarized", "spin-

—orbit"]}

is perfectly acceptable and the way the algorithm handle with these multiple iterations is decided by the Sies-
talterator input explained next in this list.

* iterate_mode, class St r, Optional

Indicates the way the parameters should be iterated. Currently allowed values are ‘zip’ (zips all the parameters
together, this imposes that all keys should have the same number of values in the list!) and ‘product’ (performs
a cartesian product of the parameters, meaning that all possible combinations of parameters and values are
explored).

The option ‘zip’ is the default one.
* batch_size, class Int, Optional

The maximum number of simulations that should run at the same time. You can set this to a very large number
if you want that all simulations run in one single batch. As default, only one single calculation at the time is
submitted.

Outputs

This WorkChain does not generate any output! It is, in fact, a tool to help the submission of multiple calculations
and keep them all connected and easy accessible through the main workchain node, but it does not have any precise
scope. AiiDA provides a powerful querying system to explore all the results of the submitted calculations and a tool
to organize the data.

Protocol system

The protocol system is not directly available for this WorkChain. However inputs of the SiestaBaseWorkChain can
be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator ()
inputs = inp_gen.get_inputs_dict (structure, calc_engines, protocols)

The inputs of get_inputs_dict are explained in the protocols documentation. Then the user must define at least
the input iterate_over in order to be able to submit the Siestalterator WorkChain.

2.4.1.6 Converger workflow

Description

The SiestaConverger is a tool to facilitate convergence tests with Siesta. It extends the Siestalterator to accept a target
quantity that is checked after each step to evaluate whether convergence has been reached or not. The convergence
check just consists in calculating the difference in the target quantity between the present step and the step before and
comparing it with a threshold value passed by the user in input. An example on the use of the SiestaConverger is
/aiida_siesta/examples/workflows/example_convergence.py.

2.4. Workflows 33

https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/data.html#finding-and-querying-for-data
https://aiida.readthedocs.io/projects/aiida-core/en/latest/howto/data.html#organizing-data

AiiDA Siesta Plugin Documentation, Release 2.0.0

Supported Siesta versions

Atleast4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

All the Siestalterator inputs are as well inputs of the SiestaConvereger, they are described in the corresponding
documentation. Additional inputs are:

* target, class Str, Optional

The parameter the user wants to track in order to check if convergence has been reached. All the quantities
returned in the output_parameters dictionary of the SiestaBaseWorkChain are accepted for this scope, ex-
cluding keys that don’t have a float or int as a value. Typical values are the Kohn-Sham (E_KS), Free (FreeE),
Band (Ebs), and Fermi (E_Fermi) energies, and the total spin (stot); however the user might also think to
converge calculations-time related quantities.

The E_KS is the default value.
* threshold, class Float, Optional

The maximum difference between two consecutive steps to consider that convergence is reached. Default is
Float (0.01).

Outputs

The following outputs are returned:
* converged Bool
Returning True or False, whether the target has converged or not.
* converged_target_value Float
The value of the target when the convergence has been reached. Returned only if the convergence is succesfull.
* converged_parameters Dict

The values for the parameters that was enough to achieve convergence. If converged is not achieved, it won’t be
returned.

Protocol system

The protocol system is not directly available for this WorkChain. However inputs of the SiestaBaseWorkChain can
be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator ()
inputs = inp_gen.get_inputs_dict (structure, calc_engines, protocols)

The inputs of get_inputs_dict are explained in the profocols documentation. Then the user must define at least
the input iterate_over in order to be able to submit the SiestaConverger WorkChain (if no target is specified, the
E_KS is used).

34 Chapter 2. Contents:

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

2.4.1.7 Sequential Converger workflow

Description

The SiestaSequentialConverger is an iterator that sequentially runs SiestaConvergers. Once the convergence over
a parameter is reached, the converged value is used for the following convergence test (on a new parameter). An
example on the use of the SiestaConverger is /aiida_siesta/examples/workflows/example_seq_converger.py

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

Two are the required inputs:
* converger_inputs, class dict, Mandatory

A dictionary containing all the inputs required by the SiestaConverger, except the iterate_over port. The
explanations of the converger inputs can be examined here <siesta-converger-inputs>. Please note that the
normal inputs of a SiestaBaseWorkChain process (structure, parameters, basis, code, ...) must be included as
well in this dictionary.

The same default values as SiestaConverger apply if some ports are not specified here.
* iterate_over, class 11ist, Mandatory

There is a specific port for the quantities to iterate over and now the accepted value for this port is a list, not a
dictionary like it was for the SiestaConverger or Siestalterator. In fact, now the user should indicate a list of
parameters that he/she wants to converge sequentially. A practical example:

iterate_over=]|
{
'kpoints_0': [4,10,12,14,16,18,20],
'kpoints_1': [4,10,12,14,16,18,20],
'kpoints_2': [4,10,12,14,16,18,20],
}I
{
'meshcutoff': ["500 Ry", "600 Ry", "700 Ry", "800 Ry", "900 Ry"],
}I
{
'pao—-energyshift': ["0.02 Ry", "0.015 Ry", "0.01 Ry", "0.005 Ry", "0.001 Ry"]
}
]

With this specification, we signal that we want to converge first the kpoints by increasing all components at the
same time (assuming “zip” is selected as ‘iterate_mode’ in the converger_inputs dictionary), then the ‘mesh-
cutoff’ and finally the ‘energy shift’. The converged kpoints will be used for the convergence of ‘meshcutoff’,
the converged kpoints and ‘meshcutoff’ will be used for the convergence process of ‘energy shift’.

Note that one can converge the same parameters again if wanted, for instance set up different rounds for kpoints
convergence.

2.4. Workflows 35

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

Warning: If one of the parameters does not converge, no action is taken and the following convergence step
is performed using the inputs specified in converger_inputs, not using the last attempted value in the previ-
ous convergence. For instance, in the example above, if the meshcutoff does not converged at 900 Ry, the
pao-energyshift convergence will be done using the inputs parameters specified in the parameters of
converger_inputs, notincluding meshcutoff = "900 Ry".

Outputs

The following outputs are returned:
* converged_target_value Dict

The value of the target when the convergence has been reached. Returned only if at least one of the sequential
convergences has been completed succesfull.

* converged_parameters Dict

The values for the parameters that was enough to achieve convergence. If converged is not achieved, it will be
an empty dictionary.

e unconverged_parameters List

If one or more parameters fail to converge, we list them in this output.

Protocol system

The protocol system is not directly available for this WorkChain. However inputs of the SiestaBaseWorkChain can
be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator ()
inputs = inp_gen.get_inputs_dict (structure, calc_engines, protocols)

The inputs of get_inputs_dict are explained in the protocols documentation. Then the user can place these
inputs in the converger_inputs dictionary (together with the other SiestaConverger inputs specifications). The
input iterate_over is also required in order to be able to submit the SiestaSequentialConverger WorkChain and it
must be set manually.

2.4.1.8 Basis optimization

Description

The AiiDA-siesta package offers three workchains to help users in selecting the optimal basis set for a given system:

1) The SimplexBasisOptimization that finds the minimum of a quantity (typically the basis enthalpy) varying a set
of input variables (typically cutoff radii of orbitals) using the Nelder-Mead (simplex / amoeba) method. 2) The
TwoStepsBasisOpt that performs a two level optimization, running simplex iterations followed by periodic restarts
with new simplex hyper-tetrahedra of progressively smaller sizes. This replicates more closely the optimization util
of the siesta distribution. 3) The BasisOptimizationWorkChain that performs a full optimization testing first basis
cardinality and then applying the SimplexBasisOptimization to optimize all the radius of the orbitals.

The simplex optimization is performed taking advantage of the aiida-optimize package <https://aiida-
optimize.readthedocs.io/en/latest/index.html>_, in particular the Nelder-Mead engine implemented in that package.

36 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

Supported Siesta versions

Atleast4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

SimplexBasisOptimization

The Nelder—-Mead method (commonly known as simplex or amoeba method) is a numerical method to find the min-
imum of a function with N variables. A simplex is a special polytope of N+1 vertices in N dimensions (for instance
a triangle in 2D, a tetrahedron in 3D and so forth). The Nelder—-Mead methods in N dimensions starts from a set of
N+1 test points arranged as a simplex. The value of the function is calculated at each test point and these values are
then used in order to find a new test point and to replace one of the old test points with the new one in case it returns
a smaller value for the function under investigation. Repeating the procedure, the technique progresses until all the
N+1 test points produce values that are all within a threshold. When this happens the minimum has been reached. In
the context of the basis optimization the function is usually the basis enthalpy (but also other quantities are supported)
and the variable are the parameters defining the basis (typically cutoff radii of the basis orbitals).

An example of the use of SimplexBasisOptimization is in /aiida_siesta/examples/workflows/example_simplex.py

Inputs

Inputs are organized in two namespaces and are described in the following:
* siesta_base, input namespace, Mandatory

Accepts all the inputs of a SiestaBaseWorkChain (listed here <siesta-base-wc-inputs>) with the only manda-
tory modification to include in the “basis” input some variables to optimize. The variable must be defined using
a dollar and a string. An example:

basis = Dict (dict={

'$block pao-basis': "\nSi 2\n n=3 0 2\n 4.99376 $sz2 \n n=3 1 2 P
—1\n 6.2538 Spz2 \n%endblock pao-basis"

H)

An upper and lower value must be set for each variable and optionally one or more starting points (see next
point in this list). Please note that variables are typically defined for orbitals radii in the pao-basis block, but
one can also create variables for “higher level” keywords like the energy—-shift or split—norm.

 simplex, input namespace, Mandatory
Here all the inputs for the simplex method can be defined. They are listed in the next lines.
» simplex.variables_dict class Dict, Mandatory

A dictionary containing all the info about the variables that are modified in order to find the minimum basis
enthalpy. An example related to the basis block above:

t (dict={
.01,
.01

variables_dict = Dic
"sz2":[2.0,4.8,3
"pz2":[2.0,6.0,3
B

The variables names must be defined here as keys of the dictionary and must correspond to the strings de-
fined in the basis input, but removing the dollar symbol. The list associated to each string defines in this

2.4. Workflows 37

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

order: 1) The lower limit for the variable, 2) The upper limit, 3) the starting value to construct the sim-
plex hyper-tetrahedron. The up and down limit of the variables are used in such way: if the algorithm at-
tempts the calculation of the function out of range, a huge value for the function is returned. The start-
ing value is going to be the point from which the simplex hyper-tetrahedron is constructed. In particu-
lar, the first test point is directly formed by the specified starting points (in the example above is [3.0,3.0]).
The other N test points are obtained substituing one component with num + range * simplex_inps.
initial_step_fraction, where num is the defined starting point, range is the upper - lower limit and
simplex_inps.initial_step_~fraction isanumber between O and 1 defined in the next point of this
list. Supposing simplex_inps.initial_step_fraction = 0.2, in out example, the other two test
points are [3.0,3.8] and [3.56,3.0].

When 3) is not defined, it is chosen randomly between the boundaries, but it is always suggested to set it since it
will be used to construct the Alternatively to 3), N+1 values can be entered and this would correspond to define
explicitly all the components of all the simplex initial points.

simplex.initial_step_fraction class Float, Optional

A fractional increment to be used in the construction of the starting simplex hyper-tetrahedron. See point above
for more details. Default at F1loat (0.4). Itis ignored if all the components af all the test points are set in the
point above.

simplex.max_iters class Int, Optional

The maximum iterations for the Nelder—Mead algorithm. Please note that an iteration step usually involves
more then one new test point. So the points tested at the end will be way more than the max_iters. Once the
simplex.max_iters isreached, the workchain stops returning the best simplex so far, even if the threshold
convergence has not been reached. Default is Int (40).

simplex.output_name class St r, Optional

The name of the output that needs to be minimized. In principle all the numerical values returned in the
“output_parameters” of a SiestaBaseWorkChain are accepted, but typically the “basis_entalpy” or the “har-
ris_energy” are of interest. Defalut is Str ("basis_entalpy")

simplex.tolerance_function class Float, Optional

The tolerance accepted to define the optimization converged. If the values of the functions for all points in
the simplex are all within the simplex.tolerance_function, the optimization is considered concluded.
The defaultis Float (0.01). Please note that the choice of this parameter must be related to the variance of
the output function, therefore the default might be unreasonable for your application. In the future an extension
implementing a fractional tolerance will be provided.

Outputs

The following outputs are returned:

¢ last_simplex class List

The output containing the values of the last simplex. Always returned, even if the optimization does not reached
the required tolerance. It is a list of lists. The first element of the list is always the best choice of the parameters
obtained by the optimization so far.

¢ optimal_process_input class List

This output contains the optimal set of parameters obtained after optimization. This corresponds to the first
entry of the list return by the last_simplex, however it is returned only if the optimization succeed.

¢ optimal_process_output class Float

38

Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

The value of the function for the optimal set of parameters obtained with the optimization. Returned only if the
optimization succeed.

¢ optimal_process_uuid class List

The uuid of the SiestaBaseWorkChain that has the optimal_process_input as variables and that returned the
optimal_process_output. Returned only if the optimization succeed.

It is important to note that the optimization is entirely an AiiDA process, therefore the provenance of all calculation
called is preserved. We can have a look at the attempted variables values and the obtained basis entalpy in this simple
way. In the verdi shell:

node=load_node (<PK>) #PK of your SimplexBasisOptimization
for wc in node.called[0].called:
print (wc.inputs.the_values.get_list (),wc.outputs.ene.value)

And many more info can be extracted from the inputs and outputs of each run wc. These wc are SiestaBase-
WorkChain wrapped into a thin layer that attach to each calculation the information needed by the optimizer.

TwoStepsBasisOpt

This workchain uses the SimplexBasisOptimization, but it adds a step in the optimization, which consists in restarting
the simplex with a subsequently smaller simplex.initial_step_fraction. This is implemented in the original simplex
optimization code that can be found in the Util of the SIESTA package. There the fractional step is called “lambda”
and we will follow the same notation here.

Inputs

All the inputs of SimplexBasisOptimization are inputs of this workchain except the simplex.initial_step_fraction.
This include the way to specify the optimization variables in the siesta_base.basis input. This workchain adds
a further called macrostep. This allows:

¢ macrostep.initial_lambda class Float

The value of lambda to be used as simplex.initial_step_fraction in the first iteration. Default Float (0.4),
* macrostep.lambda_scaling_factor class Float

The rate at which lambda decreases between from a macrostep to the other. Default F1oat (0.5)
¢ macrostep.minimum_lambda class Float

When this value for lambda is reached, the macrostep iteration stops. Default Float (0.01).

Outputs

Same outputs of SimplexBasisOptimization.

BasisOptimizationWorkChain

This workchain manages entirely the optimization of the basis sets for a SIESTA calculation. It first run calculations
with different basis sizes (using the “PAO-BasisSize” option of SIESTA) and gets the size that gives minimum of the
monitored quantity (e.g. basis enthalpy).

NOTE: This does not include yet the possibility to test different basis sizes for different species.

2.4. Workflows 39

AiiDA Siesta Plugin Documentation, Release 2.0.0

It then allow to add extra orbitals to the calculation manually and see if this leads to a further decrease in the monitored
quantity.

Then automatically sets up a SimplexBasisOptimization according to an optimization schema defined by the user.

Inputs

All the inputs of SimplexBasisOptimization are inputs of this workchain except the simplex.variables_dict. Please
note that whathever is specified in siesta_base.basis will be copied in every calculation. So we prevwnt in this keyword
to set the basis bloch or the basis sizes since the alghoritm will take care of it. In siesta_base.basis can put keywords
like the “pao-non-perturbative-polarization-schema” or choices on the pseudopotential grid.

Few more inputs are allowed:

basis_sizes class List Optional
The list of basis sizes to try out. Default List (1ist=["Dz", "DzP", "TZ"]).
add_orbital class List Optional

A dict of lists, the key of the dict must be the name of an element of the periodic table, the list must list the
orbitals to add at that atom, for instance:

add_orbital = Dict (dict={
"Ca": [|13d11l’1|4fl||]’
Ho" :["4f2"1
B

This would add a f orbital with two zetas for O and a d and f orbital to Ca (one zeta each). As already specified,
the presence of this input implies an extra step between the check of basis cardinality and the actual SimplexBa-
sisOptimization.

sizes_monitored_quantity List Optional

The quantity to monitor in the check of the cardinality. If not specified is going to be the same specified in
simplex.output_name.

optimization_schema.global_energy_shift 1.ist

If set to true, the energy shift and the pao-split-norm are used as optimization variables, not the explicit radius
of the basis block. Default is False

optimization_schema.global_split norm IList

If set to true, the pao-split-norm is optimized as a global variable. Please note that this can be used in con-
junction with global_energy_shift in order to optimize only global variables and not the pao block, but it can
be also used alone to set that the first zeta radii of the orbitals are optimized, but the second zetas no! If
optimization_schema.global_split_norm is True and optimization_schema.global_energy_shift is False the
basis block is created putting all the second and further zetas to zero and the globas pao-split-norm is a variable
for optimization. Default False.

optimization_schema.charge_confinement L.ist

If set to true, the empty orbitals will receive a charge confinement and the charge of the confinement is a variable
for optimization. Default False

To conclude, the inputs allow to do various type of optimizations. As default all the radia are optimized, but this can
be modified using the optimization_schema keywords

40

Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

Outputs

Only one output is produced:
» optimal_basis_block class Dict

Returning the optimal pao block, meaning the one that gives the minimum of the monitored quantity.

Protocol system

The protocol system is not directly available for this WorkChain. However inputs of the SiestaBaseWorkChain can
be obtained in a dictionary in this way:

inp_gen = SiestaBaseWorkChain.inputs_generator ()
inputs = inp_gen.get_inputs_dict (structure, calc_engines, protocols)

The inputs of get_inputs_dict are explained in the protocols documentation. Then the user can place these
inputs in the siesta_base namespace.

2.4.1.9 Epsilon workflow

Description

The EpsilonWorkChain is a simple extension of the SietaBaseWorkChain that introduces a post-processing
step to obtain the electronic contribution to the static dielectric constant from the epsilon_2(omega) data. For
developers, this workchain can be taken as an example to understand how easy is to include simple post-
processes on top of the SietaBaseWorkChain. An example on the use of the EpsilonWorkChain is in /ai-
ida_siesta/examples/workflows/example_epsilon.py.

Supported Siesta versions

Atleast 4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

All the SiestaBaseWorkChain inputs are as well inputs of the EpsilonWorkChain, therefore the system and DFT
specifications (structure, parameters, etc.) can be defined as input in the WorkChain using the same syntax explained
in the SiestaBaseWorkChain documentation. Here we only impose a mandatory definition of the optical input port.

Outputs

» All the outputs of SiestaBaseWorkChain are also outputs of this WorkChain, they can be explored in the
relative section of the SiestaBaseWorkChain.

e epsilon Float

The low frequency (static) dielectric constant (electronic contribution) computed from the eps2(omega) data
using Kramers-Kronig relations.

2.4. Workflows 4

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

Protocol system

The protocol system is available for this WorkChain. The EpsilonWorkChain.inputs_generator () makes
available all the methods explained in the profocols documentation. In addition, the optical input is populated, set-
ting the optical mesh equal to the kpoints mesh of the calculation, the “optical-broaden” to 0.5 eV and the “optical-
polarization-type” to “polarized” with optical vector of [1.0 0.0 0.0].

2.4.1.10 NEB Base workflow

Description

The SiestaBaseNEBWorkChain is the core building block for the creation of workflows that enable the search of the
Minimum Energy Pathway (MEP) connecting two local minima of the potential energy surface through the Nudge
Elastic Band (NEB) method. In particular, this workchain performs NEB MEP optimizations starting from a guessed
path and exploiting the LUA functionality of SIESTA. This workchain is very useful for the investigation of reaction
paths and energy barriers. For instance, it can be used to study the energetic barrier for interstitial diffusion of an
impurity in an host structure. For some concrete examples, look at the aiida-siesta-barrier project.

An example on the use of the SiestaBaseNEBWork Chain is in /aiida_siesta/examples/workflows/example_neb_ghost.py.

Supported Siesta versions

Atleast4.0.1 of the 4.0 series, 4.1-b3 of the 4.1 series and the MaX-1.0 release, which can be found in the development
platform (https://gitlab.com/siesta-project/siesta). For more up to date info on compatibility, please check the wiki.

Inputs

Many of the SiestaBaseWorkChain inputs are as well inputs of the SiestaBaseNEBWorkChain, therefore the system
and DFT specifications (structure, parameters, etc.) can be defined as input in the WorkChain using the same syntax
explained in the SiestaBaseWorkChain documentation. The only exceptions are the structure and the lua namespace
that are not explicit inputs for this workchain. In fact, more than one single structure is required by NEB method and
they are passed through the dedicated input starting_path. The lua inputs are mostly defined internally except the lua
script that is now named neb_script. A more detailed description of the two new inputs follows:

« starting_path, class TrajectoryData, Mandatory

A set of structures collected in a TrajectoryData object. Each structure correspond to an image for the
NEB method. The object must have the kinds of the structure as attributes.

¢ neb_script, class SingleFileData, Mandatory

A lua script that controls the NEB calculation. An example can be seen in /ai-
ida_siesta/examples/fixtures/lua_scripts/neb.lua.

Note: The use of LUA scripts also requires the user to pass to aiida the environmental variable that indicates where
the flos library is. More info /ere.

42 Chapter 2. Contents:

https://gitlab.com/siesta-project/siesta
https://github.com/siesta-project/aiida_siesta_plugin/wiki/Supported-siesta-versions

AiiDA Siesta Plugin Documentation, Release 2.0.0

Outputs

* neb_output_package, class TrajectoryData, Mandatory

A TrajectoryData object with the final structures after the NEB optimization and the energy of each one
of them. Moreover the reaction barrier and

other useful info are reported as attributes of the node.

Protocol system

No protocol system is in place for this workchain.

2.5 Tutorials

2.5.1 Tutorials

Tutorials to help user in the understanding of the use of AiiDA and the tools delivered within the aiida-siesta
package.

2.5.1.1 2020, ICN2, Barcelona, Spain

Related resources

Virtual Machine | Quantum Mobile 20.06.1

python packages | aiida-core 1.4.2, aiida-siesta 1.1.0,
codes Siesta v4.1-rcl

These are the notes of the tutorial delivered to the “Theory and Simulation group” at ICN2 (Barcelona) the 19th of
October 2020. The tutorial was carried on using the Quantum Mobile Virtual Machine, however the steps described
below can be replicated (with some small modifications pointed out along the way) on a local machine to obtain a
working AiiDA (and aiida-siesta) installation. Tutors: Emanuele Bosoni, Pol Febrer.

Installation

Installation is through pip after moving to a new virual environment (we use virtualenvwrapper, but any alter-
native is valid, only make sure to select a python version 3.6 or above). We call the virtual environment tutorial.

mkvirtualenv tutorial
workon tutorial
pip install aiida-siesta==1.1.0

This will install an appropriate version of aiida-core (last release at the time of the tutorial is 1.4.2).

Note: If you are not on the Quantum Mobile Virtual Machine, a preliminary step is required to install PostgreSQL
and RabbitMQ, as described here.

Because we want to isolate the current AiiDA installation from other installations that might be present in the machine,
we specify the aiida configuration directory in the virtual environment activation file:

2.5. Tutorials 43

https://github.com/marvel-nccr/quantum-mobile/releases/tag/20.06.1
https://pypi.org/project/aiida-core/1.4.2
https://pypi.org/project/aiida-siesta/1.1.0
https://gitlab.com/siesta-project/siesta/-/wikis/Guide-to-Siesta-versions
https://aiida.readthedocs.io/projects/aiida-core/en/latest/intro/installation.html#installing-prerequisites

AiiDA Siesta Plugin Documentation, Release 2.0.0

echo 'export AIIDA_PATH=$VIRTUAL_ENV' >> $VIRTUAL_ENV/bin/postactivate
workon tutorial

The configuration directory is now ~/.virtualenvs/tutorial.

Moreover we can add in the same file a line to activate tab-completion:

echo 'eval "$(_VERDI_COMPLETE=source verdi)"' >> SVIRTUAL_ENV/bin/postactivate
workon tutorial

Check the status of the installation:

verdi status

This should show that the configuration directory is set, but no profile has been created yet.

Setting up the AiiDA profile

The aiida profile is set up with one single command:

verdi quicksetup

An interactive shell will ask some data and after that the creation of the profile starts. It concludes with the message
“Success: database migration completed”. Now is time to scan for plugins and start the daemon:

reentry scan
verdi daemon start

If all the steps have been successful, you should be able to see all green ticks when typing

’verdi status

and also be able to see “siesta.siesta” among the available calculations plugins:

’verdi plugin list aiida.calculations

We are ready to set up a code and computer.

Computer and code setup

The setup of a computer is done through:

verdi computer setup

and filling in the interactive shell requirements. For the Quantum Mobile they are:

Computer label: localhost

Hostname: localhost

Description []: This machine

Transport plugin: local

Scheduler plugin: slurm

Shebang line (first line of each script, starting with #!) [#!/bin/bash]:

Work directory on the computer [/scratch/{username}/aiida/]: /home/max/aiidarun
Mpirun command [mpirun -np {tot_num mpiprocs}]:

Default number of CPUs per machine: 2

44 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

Then a file is automatically opened with “vi” editor. It allows to insert text to prepend/append to any submission script.
We don’t require it. Therefore just press Esc and type :wq.

Any remote computer can be set up in the exact same way, just making sure to have a password-less access to it (ssh
key) and selecting “ssh” as “Transport plugin”.

The computer must be configured, this allows to select some advanced features:

’verdi computer configure local localhost ‘

The default values are ok for the sake of this tutorial, therefore just press enter. The computer setup is over and the
success of this action can be checked with:

’verdi computer test localhost ‘

The next step is the setup of a code.

Note: This section covers the set up of the Siesta code already installed in the Quantum Mobile virtual machine. In
case of local installation, make sure to include the right specifications for your Siesta code (that might be on a remote
cluster).

The command is:

verdi code setup

and the interactive shell will facilitate the setting up of the code. For Quantum Mobile we insert:

Label: siesta-v4.l

Description []: siesta-v4.l-rcl

Default calculation input plugin: siesta.siesta
Installed on target computer? [True]:

Computer: localhost

Remote absolute path: /usr/local/bin/siesta

Again a file is opened, asking to specify an optional text to prepend/append to the submission script. Typically here is
where we include the calls to modules that are needed to run the code. In our case we insert “ulimit -s unlimited” as
prepend text. The writing mode of “vi” is activated pressing i, after the insertion, Esc and : wq to save the file.

The code is set up.

Note: It is also possible to set up computer and codes from a configuration file. See section Setting up the hpcq for
an example.

Creating a pseudo family

Before starting to play with aiida-siesta, it can be useful to learn how to set up of a pseudopotential family. We
download a set of pseudopotentials from PseudoDojo:

wget http://www.pseudo-dojo.org/pseudos/nc-sr-04_pbe_standard_psml.tgz
mkdir nc-sr-04_pbe_standard_psml
tar —xf nc-sr-04_pbe_standard_psml.tgz -C nc-sr-04_pbe_standard_psml

and store tham in the database under the name “nc-sr-04_pbe_standard_psml”:

2.5. Tutorials 45

http://www.pseudo-dojo.org/

AiiDA Siesta Plugin Documentation, Release 2.0.0

verdi data psml uploadfamily nc-sr-04_pbe_standard_psml nc-sr—-04_pbe_standard_psml
—"Scalar-relativistic psml standard"

Same can be done for psf pseudopotentials, for instance:

wget https://icmab.es/leem/SIESTA_MATERIAL/tmp_PseudoDojo/nc-sr-04_pbe_standard-psf.
—tgz

tar —-xf nc-sr-04_pbe_standard-psf.tgz

verdi data psf uploadfamily nc-sr-04_pbe_standard-psf nc-sr-04_pbe_standard-psf
—"Scalar Relativistic psf"

Note: The presudopotentials sets used in this tutorial come with no guarantee!! Use with care!

Submit a single siesta calculation

Open the file example_bands.py and explore the setting up of the various inputs. Run the script with:

runaiida example_bands.py ——-dont-send

The option ——dont—-send has been added in order to activate the “dry_run” option that every aiida process has.
This option allows to create all the inputs of the calculation, but do not submit it. You can explore in the folder
submit_test how AiiDA prepared all the inputs of a siesta calculation for you.

Now run:

runaiida example_bands.py ——-send

AiiDA took charge of your script, created the inputs and submitted the calculation. Look at the state of the process
with the command verdi process show <pk> as suggested in the shell. The <pk> number uniquely identify
your calculation and it will be used later on.

In few seconds the calculation is finished. You will relized that when verdi process show <pk> shows “Fin-
ished” status and reports the oututs. We explore the outputs. This can be done from command line, for instance:

’verdi data array show <PK_forces_and_stress>

however it is worth exploring the shell provided by AiiDA:

’verdi shell

Inside the shell:

’l:load_node(<PK_calculation>)

and explore all the methods making use of tab completion. For instance:

’l.outputs.bands.export(pathz"sigbands", fileformat="gnuplot", y_max_1lim=10)

The command above creates a file that can be plot with gnuplot in order to visualize the bands. Open a new shell and
type:

’gnuplot —-persist Si_bands

46 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

Take the chance to explore in the verdi shell some methods and attributes of data types associated to the inputs
and outputs of a SiestaCalculation. Use tab complition of 1.inputs, 1.outputs, 1.attributes, ..

The submission script can be modified very easily in order to run a SiestaBaseWorkChain instead of a
SiestaCalculation. Look at the commented part of the example_bands . py script in order to understand the
differences. The “dry_run” option is not available for the SiestaBaseWorkChain. A SiestaBaseWorkChain
automatically takes care of fixing some common errors of a siesta calculation, therefore it adds robustness in running
siesta calculations.

Protocols

Go back to the verdi shell and look at the following:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
inp_gen=SiestaBaseWorkChain.inputs_generator ()

You just imported the inputs generator for the SiestaBaseWorkChain. We can explore its functionality:

inp_gen.get_protocol_names ()
inp_gen.get_spins ()

And many more... Use tab complition to explore them. These methods allows you to understand which options you
can pass to get_filled_builder, as will be explained in a second.

The main feature of the input generator is the possibility to obtain a builder (a tool that helps you build the inputs
for the specific process) that is ready to be submitted:

struct = 1l.inputs.structure
calc_engines = {
'siesta': {
'code': "siesta-v4.1Q@localhost",
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 3600}
}
}
builder = inp_gen.get_filled_builder (struct,calc_engines, "standard_psml")

The calc_engines is a dictionary with fixed keys, whose aim is to pass the computational resourses for the calcu-
lation.

Explore the builder:

builder.parameters.attributes
builder.basis.attributes

We can add spin polarization to the calculation with:

builder = inp_gen.get_filled_builder (struct,calc_engines, "standard_psml", spin=
—"polarized")

Try again builder.parameters.attributes, what are the differences compared to before?

We could run the builder straight away, however:

inp_gen.get_protocol_info("standard psml")

2.5. Tutorials a7

https://aiida-siesta-plugin.readthedocs.io/en/latest/workflows/base.html#error-handling

AiiDA Siesta Plugin Documentation, Release 2.0.0

remind us that the protocol we are using does not support siesta-4.1 because it uses psml pseudopotentials.

Close the shell and look at the file my_protocols_registry.yaml. It contains a new set of inputs and the psf
pseudos. This file can be modified at will and its content will become a new protocol. Simply do:

export AIIDA_SIESTA_PROTOCOLS="/home/max/abs_path_to/my_protocols_registry.yaml"

taking care of passing the correct absolute path where you have my_protocols_registry.yaml.

Now open the shell and:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
inp_gen=SiestaBaseWorkChain.inputs_generator ()
inp_gen.get_protocol_names ()

The new protocol is on the list and we can use it to run a calculation:

l1=load_node (<PK_calculation>)

struct = 1l.inputs.structure
calc_engines = {
'siesta': {
'code': "siesta-v4.1l@localhost",
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 3600}
}
}
builder = inp_gen.get_filled_builder (struct,calc_engines, "my_protocol")

from aiida.engine import run
run (builder)

The command run send the calcualation in the shell in interactive mode (does not submit to the builder as submit
would do). Our set up will occupy the shell for a minute or so and at the end it will return the outputs of the calculation.

Using jupyter in the Quantum Mobile VM

For the next sections, we are going to use jupyter notebooks to make it more interactive. Installing jupyter in Quantum
Mobile is quite easy. Since jupyter has some incompatibilities with aiida (to be solved with https://github.com/
aiidateam/aiida-core/pull/4317), we are going to install it in the base python, which will make it accessible globally.
So, if you are inside a virtual environment, just leave:

’deactivate

And proceed to install jupyter:

’pipB install jupyter

Now, we just need to tell jupyter that our environment exists. For this, you need to activate the environment:

’workon tutorial

And then use ipykernel to inform jupyter:

pip install ipykernel
ipython kernel install --user --name=tutorial

That’s about it. Let’s move on!

48 Chapter 2. Contents:

https://github.com/aiidateam/aiida-core/pull/4317
https://github.com/aiidateam/aiida-core/pull/4317

AiiDA Siesta Plugin Documentation, Release 2.0.0

Run a convergence workflow

It’s quite easy to run a convergence workflow using aiida-siesta. You can find detailed information about it in this
notebook

However, as a quick summary you can do:

from aiida_siesta.workflows.converge import SiestaSequentialConverger
from aiida.engine import run

calc_node=load_node (<PK_calculation>)
run (SiestaSequentialConverger,

iterate_over=[
{"kpoints_O": [4,5,6,7,8,9,10,11,12,13,14,151},
{"kpoints_1": [4,5,6,7,8,9,10,11,12,13,14,1571}
1,

converger_inputs={
'code':load_code('siesta-v4.1@localhost'"),
'pseudo_family': Str('nc-sr-04_pbe_standard-psf')

'structure': calc_node.inputs.structure,

'parameters': Dict (),

'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine
—": 1},"max_wallclock_seconds": 3600}

'batch_size': Int(3)

to converge your structure’s kpoints (first and second components), running three simulations at a time.

Create a WorkChain

In this section, we will guide you through your first steps at creating workchains.

Please download this zip file where you will find all the contents for the section. Then unzip it and enter the
directory:

unzip first_workchain.zip
cd first_workchain

Once you are inside, launch jupyter:

jupyter notebook

and open the First workchain.ipynb notebook. From here, just follow the instructions on the notebook :)

Setting up the hpcq

We already set up a computer and code in the Computer and code setup section. Remote computers, and therefore
HPCQ, are no different. To set them up, you need to follow the same steps. There’s just one difference, you need to
generate the ssh keys so that aiida can login to the remote computer in your behalf without needing the password.

You can generate them with:

2.5. Tutorials 49

AiiDA Siesta Plugin Documentation, Release 2.0.0

ssh-keygen -t rsa -b 4096 -m PEM

And then register them to the hpcq so that it allows you to access:

ssh—copy-id <username>@10.100.2.51

Just with that, you would be able to access like ssh <username>@10.100.2.51, but aiida wants to access without
knowing your username (ssh 10.100.2.51). For this, you need to:

’vi ~/.ssh/config

And include the following lines to the file (with one empty line before and after):

Host 10.100.2.51
User <username>

With this, you are all good to go! We just need to setup the computer and the code.

There’s a small gotcha though with the hpcq: Each farm needs to be setup as a different computer, as it has a different
architecture and it runs a different compilation of the code.

Therefore for each farm we will need to setup a computer with this configuration:

label: "hpcg-farm<farm name>"

hostname: "10.100.2.51"

description: "hpcg farm <farm name>"

shebang: "#!/bin/bash"

transport: "ssh"

scheduler: "slurm"

work_dir: "/home/ICN2/ /.aiida"
mpirun_command: "mpirun -np "
mpiprocs_per_machine: <num cores per node of the farm>

where <farm name> and <num cores per node of the farm> need to be replaced by the appropiate values for each
farm.

Correspondingly, we need to setup a code with this configuration:

label: "siesta_farm<farm name>"
description: "Siesta compilation to run in hpcg-farm<farm name>"
input_plugin: "siesta.siesta"

on_computer: true
remote_abs_path: <path_to_siesta>
computer: "hpcg-farm<farm name>"
prepend_text: |
<load all modules that you need here>

ulimit -1 unlimited
ulimit -s 51200
ulimit -n 51200
custom_scheduler_commands: "#SBATCH -p <farm name>"

We know this is a cumbersome process, therefore you can download all the config files from here.

Unzip the downloaded zip and enter the directory to check what you have there:

unzip aiida-hpcg-config.zip
cd aiida-hpcg-config

50 Chapter 2. Contents:

AiiDA Siesta Plugin Documentation, Release 2.0.0

You still need to go through each of them manually. So, enter the Computers directory and setup the ones you want
by running the following command:

’verdi computer setup --config hpcg-farm<farm name>.yml

and then configure it:

’verdi computer configure ssh hpcg-farm<farm name>

You can (should) test it to check that everything is ok:

’verdi computer test hpcg-farm<farm name>

Then, for each farm that you set up, we need to set up its code. With the downloaded zip, you are provided some
binaries for each farm in <siesta-binaries>. For a quick test, you can copy the siesta-binaries folder to your hpcq
home, and then use the config files in the Codes directory:

verdi code setup —--config siesta-farm<farm name>.yml

Now you will be able to submit calculations to the hpcq by setting the code input to the siesta@hpcq-farm<farm
name> :)

2.5.1.2 2021, Virtual event

Related resources

Virtual Machine | Siesta Mobile 0.2.0

python packages | aiida-core 1.6.1, aiida-siesta 1.2.0,
codes Siesta Max-1.3.0-1

These are the notes of the tutorial delivered to the CECAM school “First-principles simulations of materials with
SIESTA” running virtually from 28th of June to 2nd of July 2021. The tutorial was carried on using the Siesta Mobile
Virtual Machine, however reference to the relevant aiida documentation is reported at the beginning. If you are running
on Siesta Mobile, jump here.

Tutor: Emanuele Bosoni

Installation and setup (ONLY IF NOT IN SIESTA MOBILE)

Installation is through pip after moving to a new virual environment (we use virtualenvwrapper, but any alter-
native is valid, only make sure to select a python version 3.6 or above). We call the virtual environment tutorial.

mkvirtualenv tutorial

workon tutorial

pip install aiida==1.6.1

pip install aiida-siesta==1.2.0

Follow the instructions in the AiiDA documentation. to set up aiida.

Computer and code setup (ONLY IF NOT IN SIESTA MOBILE)

Follow the instructions to set up your computer and a siesta executable.

2.5. Tutorials 51

https://drive.google.com/drive/u/2/folders/14V50YRuJfW1jxdWkQzZPnTx0TIa10ftX
https://pypi.org/project/aiida-core/1.6.1
https://pypi.org/project/aiida-siesta/1.2.0
https://gitlab.com/siesta-project/siesta/-/wikis/Guide-to-Siesta-versions
https://aiida.readthedocs.io/projects/aiida-core/en/v1.6.1/intro/get_started.html
https://aiida.readthedocs.io/projects/aiida-core/en/v1.6.1/howto/run_codes.html

AiiDA Siesta Plugin Documentation, Release 2.0.0

Creating a pseudo family

In the Siesta Mobile, activate the virtual environment workon siesta_school. Otherwise activate the environ-
ment you created before.

Check the status of aiida typing verdi status. Check the codes installed with verdi code list.

Before starting to play with aiida-siesta, it can be useful to learn how to set up a pseudopotential family containing a
collection of pseudos from PseudoDojo. Just do:

aiida-pseudo install pseudo-dojo -v 0.4 -x PBE -r SR -p standard -f psml

This will install version 0.4 PBE scalar relativistic and standard accuracy in psml form under the name ‘“Pseu-
doDojo/0.4/PBE/SR/standard/psml”.

If you have a FOLDER containing psf pseudopotentials, you can create a family with:

aiida-pseudo install family /PATH/TO/FOLDER/ FAM_NAME -P pseudo.psf

Submit a single siesta calculation

Open the file example_bands.py and explore the setting up of the various inputs. Focus in particular in the
understanding of the structure definition and also notice how easy is in AiiDA to request the generation of an automatic
k-point path for the bands. We use the pseudos family we created before. Run the script with (if not in Siesta Mobile,
change the code name inside the script):

runaiida example_bands.py —-dont-send

The option ——dont-send has been added in order to activate the “dry_run” option that every aiida process has.
This option allows to create all the inputs of the calculation, but do not submit it. You can explore in the folder
submit_test how AiiDA prepared all the inputs of a siesta calculation for you.

Now run:

runaiida example_bands.py ——send

AiiDA took charge of your script, created the inputs and submitted the calculation. Look at the state of the process
with the command verdi process show <pk> as suggested in the shell. The <pk> number uniquely identify
your calculation and it will be used later on.

In few seconds the calculation is finished. You will relized that when verdi process show <pk> shows “Fin-
ished” status and reports the oututs. We explore the outputs. This can be done from command line, for instance:

’verdi data array show <PK_forces_and_stress>

however it is worth exploring the shell provided by AiiDA:

’verdi shell

Inside the shell:

’l=load_node(<PK_calculation>)

and explore all the methods making use of tab completion. For instance:

’l.outputs.bands.export(path:"Sigbands", fileformat="gnuplot", y_max_1lim=10)

52 Chapter 2. Contents:

http://www.pseudo-dojo.org/

AiiDA Siesta Plugin Documentation, Release 2.0.0

The command above creates a file that can be plot with gnuplot in order to visualize the bands. Open a new shell and
type:

gnuplot ——-persist Si_bands

Take the chance to explore in the verdi shell some methods and attributes of data types associated to the inputs
and outputs of a SiestaCalculation. Use tab complition of 1.inputs, 1.outputs, 1.attributes, ..

The submission script can be modified very easily in order to run a SiestaBaseWorkChain instead of a
SiestaCalculation. Look at the commented part of the example_bands.py script in order to understand
the differences. If you want to try to run a SiestaBaseWorkChain, just uncomment the inputs["option"] =
Dict ... part and comment the line above (inputs['metadata'] ['options'] = .. was just for the
SiestaCalculation), change the definition of process and run the script. The “dry_run” option is not available for the
SiestaBaseWorkChain. A SiestaBaseWorkChain automatically takes care of fixing some common errors
of a siesta calculation, therefore it adds robustness in running siesta calculations.

Protocols

Go back to the verdi shell and look at the following:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
inp_gen=SiestaBaseWorkChain.inputs_generator ()

You just imported the inputs generator for the SiestaBaseWorkChain. We can explore its functionality:

inp_gen.get_protocol_names ()
inp_gen.get_spins ()

And many more... Use tab complition to explore them. These methods allows you to understand which options you
can pass to get_filled_builder, as will be explained in a second.

The main feature of the input generator is the possibility to obtain a builder (a tool that helps you build the inputs
for the specific process) that is ready to be submitted:

1=1load_node (<PK_calculation>) #The PK loaded before

struct = 1l.inputs.structure
calc_engines = {
'siesta': {
'code': "siesta-school--MaX-1.3.0-1Q@localhost",
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 3600}
}
}
builder = inp_gen.get_filled_builder (struct,calc_engines, "standard_psml")

The calc_engines is a dictionary with fixed keys, whose aim is to pass the computational resourses for the calcu-
lation.

Explore the builder:

builder.parameters.attributes
builder.basis.attributes

We can add spin polarization to the calculation with:

2.5. Tutorials 53

https://docs.siesta-project.org/projects/aiida-siesta/en/v1.2.0/workflows/base.html#error-handling
https://docs.siesta-project.org/projects/aiida-siesta/en/v1.2.0/workflows/base.html#error-handling

AiiDA Siesta Plugin Documentation, Release 2.0.0

builder = inp_gen.get_filled_builder (struct,calc_engines, "standard_psml",spin=
—"polarized")

Try again builder.parameters.attributes, what are the differences compared to before?

We can run the builder straight away:

from aiida.engine import run
run (builder)

The calculation will take about 10 minutes, therefore let it run and go on with the tutorial. At the end of this section
you can come back on this terminal and explore the results if you wish.

We are now going to create our own protocol. Look at the file my_protocols_registry.yaml. This is the
way you specify a protocol in aiida-siesta, using YAML syntax. You can recognize the same pseudos family used
before and other familiar siesta keywords. The spin_additions are added just for spin pilarized calculations. The
relax_additions only for the times a relaxation is requested. The atom_heuristics are added just if in the
structure there is the indicated element. Look at the corresponding docs, for more info.

This file can be modified at will and its content will become a new protocol. Simply look at the folder where you are
pwd and attach the file to the correct environment variable, like that:

export AIIDA_SIESTA_PROTOCOLS="path_discovered with_pwd/my_protocols_registry.yaml"

taking care of passing the correct absolute path where you have my_protocols_registry.yaml.

Now open the shell and:

from aiida_siesta.workflows.base import SiestaBaseWorkChain
inp_gen=SiestaBaseWorkChain.inputs_generator ()
inp_gen.get_protocol_names ()

The new protocol is on the list and we can use it to run a calculation:

1=1load_node (<PK_calculation>)

struct = l.inputs.structure
calc_engines = {
'siesta': {
'code': "siesta-school-—-Max-1.3.0-1Q@localhost",
'options': {'resources': {'num_machines': 1, "num_mpiprocs_per_machine": 1},
—"max_wallclock_seconds": 3600}
}
}
builder = inp_gen.get_filled_builder (struct,calc_engines, "my_protocol")

from aiida.engine import run
run (builder)

The command run send the calcualation in the shell in interactive mode (does not submit to the builder as submit
would do). Our set up will occupy the shell for a minute or so and at the end it will return the outputs of the calculation.

Run a convergence workflow

It’s quite easy to run a convergence workflow using aiida-siesta.

For instance, in a verdi shell you can do (taking care again to integrate the correct PK):

54 Chapter 2. Contents:

https://docs.siesta-project.org/projects/aiida-siesta/en/v1.2.0/utils/protocols_system.html#how-to-create-my-protocols

AiiDA Siesta Plugin Documentation, Release 2.0.0

from aiida_siesta.workflows.converge import SiestaSequentialConverger
from aiida.engine import run

calc_node=load_node (<PK_calculation>)
run (SiestaSequentialConverger,

iterate_over=[

{

"kpoints_O": [4,6,8,10,12,14,161],

"kpoints_1": [4,6,8,10,12,14,16],

"kpoints_2": [4,6,8,10,12,14,161],
}I
{

'meshcutoff': ["500 Ry", "600 Ry", "700 Ry", "800 Ry", "900 Ry"],

}
i

converger_inputs={

'code':load_code ('siesta-school--MaX-1.3.0-1@localhost'),
'pseudo_family': Str('PseudoDojo/0.4/PBE/SR/standard/psml'),
'structure': calc_node.inputs.structure,
'parameters': Dict (),
'options': Dict (dict={'resources': {'num_machines': 1, "num_mpiprocs_

—per_machine": 1}, "max_wallclock_seconds": 3600}),
'batch_size': Int(3)

This code will converge your structure’s kpoints (increasing all the components at the same time) and subsequently
the meshcutoff using the converged kpoints. Three simulations at a time will be performed as specified by the
batch_size input.

More info in the documentation.

Want to know more??

In general about Aiida (create your workflos and so on)? Aiida tutorials
On aiida siesta? docs

Ask me: ebosoni @icmab.es

2.5. Tutorials 55

https://docs.siesta-project.org/projects/aiida-siesta/en/v1.2.0/workflows/seq_converger.html
https://aiida-tutorials.readthedocs.io/en/latest/
https://docs.siesta-project.org/projects/aiida-siesta/en/latest/index.html
mailto:ebosoni@icmab.es

	Acknowledgments:
	Contents:
	Installation
	Installation and dependences
	For developers

	Calculation plugins
	Calculations
	Siesta calculations
	STM calculations

	Utilities
	Utils
	The protocols system
	FDF dictionary
	PAO manager

	Workflows
	Workflows
	Base workflow
	Bandgap workflow
	Equation Of State workflow
	STM workflow
	Iterator workflow
	Converger workflow
	Sequential Converger workflow
	Basis optimization
	Epsilon workflow
	NEB Base workflow

	Tutorials
	Tutorials
	2020, ICN2, Barcelona, Spain
	2021, Virtual event

