# How to run WANNIER90 directly from SIESTA





# **Javier Junquera**



### Important bibliography:

#### For a review on Maximally Localized Wannier functions:

REVIEWS OF MODERN PHYSICS, VOLUME 84, OCTOBER-DECEMBER 2012

#### Maximally localized Wannier functions: Theory and applications

#### Nicola Marzari

Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland

#### Arash A. Mostofi

Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom

#### Jonathan R. Yates

Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

#### Ivo Souza

Centro de Física de Materiales (CSIC) and DIPC, Universidad del País Vasco, 20018 San Sebastián, Spain and Ikerbasque Foundation, 48011 Bilbao, Spain

#### **David Vanderbilt**

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

### Important bibliography:

The user guide of the WANNIER90 code

wannier90: User Guide

Version 3.0

 $27\mathrm{th}$  February 2019

Freely available from: http://www.wannier.org

# Graphene structure

#### graphene.fdf

| SystemName | graphene |
|------------|----------|
|------------|----------|

- # Graphene layer
- # MeshCutoff: 600 Ry
- # 20 x 20 x 1 Monkhorst-Pack mesh

SystemLabel graphene

LatticeConstant 1.47030 Ang

- # Nearest-neighbor distance, d
- # The primitive translation vectors
- # will be given by
- # a\_{1} = (3/2 d, sqrt(3)/2 d, 0)
- # a\_{2} = (3/2 d, + sqrt(3)/2 d, 0)
- # Here the z-component of the vectors
- # is large enough to avoid interactions
- # between periodic replicas of the slab

#### %block LatticeVectors

| 1.500     | -0.8660254038    | 0.000  |
|-----------|------------------|--------|
| 1.500     | 0.8660254038     | 0.000  |
| 0.000     | 0.0000000000     | 20.000 |
| %endblocl | k LatticeVectors |        |

AtomicCoordinatesFormat Fractional %block AtomicCoordinatesAndAtomicSpecies 0.3333333333 0.333333333 0.000 1 0.66666666667 0.6666666667 0.000 1 %endblock AtomicCoordinatesAndAtomicSpecies



Here, the same lattice vectors, but in Angstrom, not in unit of the lattice constant.

### graphene.win

begin unit\_cell\_cart Ang 2.20545 -1.27331715120714 0.000 2.20545 1.27331715120714 0.000 0.000 0.000000000000 29.406000 end unit\_cell\_cart

### **Graphene: plotting the band-structure in SIESTA**

# Begin at \Gamma

# 50 points from K to M



# # Plotting the band structure #

BandLinesScale ReciprocalLatticeVectors %block BandLines

| 1   | 0.0        | 0.0      | 0.0 | \Gamma |
|-----|------------|----------|-----|--------|
| 50  | 0.33333    | 0.666667 | 0.0 | K      |
| 50  | 0.5        | 0.5      | 0.0 | М      |
| 50  | 0.0        | 0.0      | 0.0 | \Gamma |
| %en | dblock Bar | ndLines  |     |        |

#

# Plotting the Projected Density Of States #

%block ProjectedDensityOfStates -70.00 5.00 0.150 3000 eV %endblock ProjectedDensityOfStates

%PDOS.kgrid\_Monkhorst\_Pack 60 0 0 0.5 0 60 0 0.5 0 0 2 0.5 %end PDOS.kgrid\_Monkhorst\_Pack



# **Specification of the number of bands to Wannierize**



### **Entangled bands**

In many applications, the bands of interest are not isolated.

The desired bands lie within a limited energy range, but overlap and hybridize with other bands that extend further out in energy



#### Graphene

We are interested in project the wannierization over the three sp<sup>2</sup> orbitals and the  $\pi/\pi^*$ manifold (five Wannier functions in total)

At this point, the  $\pi$  bands are crossed by other unwanted bands

Which states to choose to form J WFs, particularly in those regions of k space where the bands of interest are hybridized with other unwanted bands?

### **Entangled bands**

The problem of computing well localized WFs starting from entangled bands is broken down into two distint steps

#### **Subspace selection**

For a given  $\vec{k}$  point, a prescription is needed for constructing J states from a linear combination of the states of the larger manifold

If the *J*-dimensional Bloch manifold is constructed so it varies smoothly as a function of  $\vec{k}$ 

#### Gauge selection

Once a suitable *J*-dimensional manifold has been identified at each k, apply the same procedure than for isolated manifolds to generate localized WFs spannig that manifold

Then the corresponding WFs are well localized

### **Entangled bands**

The problem of computing well localized WFs starting from entangled bands is broken down into two distint steps

#### **Subspace selection**

For a given  $\vec{k}$  point, a prescription is needed for constructing J states from a linear combination of the states of the larger manifold

#### Graphene





We are interested in project the wannierization over the three sp<sup>2</sup> orbitals and the  $\pi/\pi^*$ manifold (five Wannier functions in total)

For all the  $\vec{k}$  points, we should construct five Bloch-like functions, since we are interested in five Wanniers

We start with a larger set of Bloch bands,  $\mathcal{J}_{\vec{k}}$ , lying: - Within a given energy window (the outer window) - Within a specified range of bands

 $\mathcal{J}_{\vec{k}} \geq J$ 

In our example, the energy window contains 8 bands at some  $\vec{k}$  points, while we are interested in five Wanniers

### Entangled bands: subspace selection via projection

Starting point: A set of J localized trial wave functions  $g_n(\vec{r})$ 

Project each of them onto the space spanned by the chosen eigenstates at each  $k_{\parallel}$ 

$$|\phi_{n\vec{k}}\rangle = \sum_{m=1}^{\mathcal{I}_{\vec{k}}} |\psi_{m\vec{k}}\rangle \langle \psi_{m\vec{k}}|g_n\rangle$$

The same as before, but the overlap matrix  $(A_{\vec{k}})_{mn} = \langle \psi_{m\vec{k}} | g_n \rangle$  is rectangular

We then orthonomarlize the resulting J orbitals to produce a set of J smoothly varying Bloch-like functions

$$\begin{split} |\tilde{\psi}_{n\vec{k}}\rangle &= \sum_{m=1}^{J} |\phi_{m\vec{k}}\rangle \left(S_{\vec{k}}^{-1/2}\right)_{mn} \\ \left(S_{\vec{k}}\right)_{mn} &= \langle \phi_{m\vec{k}} |\phi_{n\vec{k}}\rangle_{V} = \left(A_{\vec{k}}^{\dagger}A_{\vec{k}}\right)_{mn} \end{split}$$

Same procedure as with the disentangled bands, but with rectangular  $A_{\vec{k}}$  matrix

# **Example: band structure of Si**



N. Marzari et al.

Rev. Mod. Phys.

84, 1419 (2012)

-20

- We are interested in eigth Wanniers

- We choose as localized trial wave functions eigth atomic like sp
- The outer energy window coincide with the entire energy axis s
  (i.e. We take many more Bloch functions than Wanniers
- The disentangle bands shown as blue triangles

The overall agreement, in general, is good Significant deviations found wherever higher unoccupied bands and unwanted states possessing some significant  $sp^3$  character are admixed with the projected manifold

### **Example: band structure of Si**



N. Marzari *et al.* Rev. Mod. Phys. 84, 1419 (2012)

-20

This behavior can be avoided by forcing certain Bloch states to be identically in the projected manifold;

We refer to those as belonging to a frozen "inner" window

The placement and range of this window will depend on the problem at hand.

I. Souza et al. Phys. Rev. B 65, 035109 (2001)

Circles: the results obtained by forcing the entire valence manifold to be preserved, leading to a set of eight projected bands that reproduce exactly the four valence bands, and follow quite closely the four low-lying conduction bands

### **Example: band structure graphene**





N. Marzari *et al.* Rev. Mod. Phys. 84, 1419 (2012)

### **Projection on** $p_z$ orbitals of C and on three $sp^2$ -like orbitals



#### Why *sp*<sup>2</sup>-like orbitals?

Because the valence bands can be considered as bonding combinations of  $sp^2$  hybrids

There will be a maximum of charge shared in a symmetric way at the center of the bond

### The disentanglement procedure



Frozen energy window

Some Bloch states are forced to be preserved identically in the projected manifold; those are referred to as belonging to a frozen "inner" window

We are interested in project over the wannierization over the three sp<sup>2</sup> orbitals and the  $\pi/\pi^*$  manifold (five Wannier functions in total)

| dis_win_min  | -30.0 |
|--------------|-------|
| dis_win_max  | 5.0   |
| dis_froz_min | -30.0 |
| dis_froz_max | -7.5  |

- -30.0 ! Bottom of the outer energy window 5.0 ! Top of the outer energy window
  - ! Bottom of the inner (frozen) energy window
  - ! Top of the inner (frozen) energy window

### The projection functions

#### We are interested in obtaining 5 Wannier functions so We need five inital projections

Wannier90 allows to introduce:

- Three hydrogenoid functions with sp<sup>2</sup> symmetry of one of the C
- The two p<sub>z</sub> functions, centered on each C

#### graphene.win

| begin projections | ! The projections block defines a set of         |
|-------------------|--------------------------------------------------|
| C1:sp2;pz         | ! localised functions used to generate an        |
| C2:pz             | ! initial guess for the unitary transformations. |
| end projections   |                                                  |

### How to run the wannierization

Run WANNIER90 in preprocessing mode to generate the .nnkp file \$wannier90.x -pp graphene.win

Run SIESTA to generate the .mmn, the .amn and the .eigW files

\$siesta < graphene.fdf |tee graphene.out</pre>

Change the extension of the .eigW file

\$mv graphene.eigW graphene.eig

Run again WANNIER90 to perform the wannierization \$wannier90.x graphene.win

# **Output of a succesful run of WANNIER90**

| Final State               |                                              |                                            |
|---------------------------|----------------------------------------------|--------------------------------------------|
| WF centre and spread      | 1 (1.102724, 0.636660, -0.000000) 0.727      | 756529                                     |
| WF centre and spread      | 2 (1.102724, -0.636660, 0.000000) 0.727      | 756529 I hree sp <sub>2</sub> type-wannier |
| WF centre and spread      | 3 (2.205452, 0.000000, -0.000000) 0.727      | 754515                                     |
| WF centre and spread      | 4 (1.470301, 0.000001, 0.000000) 0.825       | 576316 The $\pi/\pi^*$ manifold            |
| WF centre and spread      | 5 ( 2.940600, -0.000001, -0.000000 ) 0.825   | 564525 <b>6</b> 4525                       |
| Sum of centres and spread | s(8.821801, -0.000001, -0.000000) 3.83408414 |                                            |

# How to plot the Wannier functions

WANNIER90 produces files with the name: SystemLabel.manifold.X\_0000Y.xsf that can be directly plotted with XCRYSDEN Once XCrySDen starts, click on File  $\rightarrow$  Open structure (Select your xsf file) Modify  $\rightarrow$  Number of units drawn 2 (along x) 2 (along y) 1 (along z) Tools  $\rightarrow$  Data Grid

> Click on OK Then, select: Degree of triCubic Spline: 3 Click on Render+/- isovalue Select the desired isovalue (in this example 0.1) Submit

#### graphene.manifold.1\_00003.xsf







# Funding

#### SPANISH INITIATIVE FOR ELECTRONIC SIMULATIONS WITH THOUSANDS OF ATOMS: CÓDIGO ABIERTO CON GARANTÍA Y SOPORTE PROFESIONAL: SIESTA-PRO

Proyecto financiado por el Ministerio de Economía, Industria y Competitividad,

y cofinanciado con Fondos Estructurales de la Unión Europea

Referencia: RTC-2016-5681-7

Objetivo Temático del Programa Operativo:

"Promover el desarrollo tecnológico, la innovación y una investigación de calidad"



